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Executive summary 

High added-value products manufacturing methods are undergoing a continuous evolution nowadays, 
aiming to get higher productivity rates, product quality and reduction of defective products. 
Manufacturing companies increasingly use condition monitoring solutions and Predictive Maintenance 
(PdM) solutions to guarantee the intended usage of production equipment and to avoid unplanned 
downtimes. As such, this white paper presents a review of the lessons learned from the point of view of 
six EU funded H2020 research projects (PRECOM, PROPHESY, PROGRAMS, SERENA, UPTIME and Z-BREAK), 
funded under the topic “FOF-09-2017 - Novel design and PdM technologies for increased operating life of 
production systems”. These projects were active from 2017 to 2021 and together constituted the ForeSee 
cluster. Research and technology partners together with industrial end-users worked collaboratively to 
develop and deploy solutions that advance maintenance practice in industry towards more efficient, 
sustainable, human-centric and resilient factories. This white paper aims to share knowledge, vision and 
lessons learnt by ForeSee cluster partners on the topic of PdM, as well as to provide recommendations 
for advancing PdM in industrial practice. The core target groups of this report are industry practitioners, 
people in academia and policy makers at the local, national and EU levels.   

The technologies that have acted as key-enablers in several of the ForeSee cluster projects (such as 
Internet of Things, Digital Twin, Proactive Computing, Virtual/Augmented Reality and linked data) are 
discussed in this document. Furthermore, the skilling of personnel, as well as the use of standardized 
technologies and processes are cross-cutting issues pertinent to ForeSee projects and their role in PdM 
projects is presented. The evaluation of these concepts and technologies in ForeSee industrial cases has 
proven their significance to industrial practice. The validation phase in industrial cases has served the 
ForeSee cluster with the provision of the following lessons learnt and recommendations for successful 
adoption of technology and best practices. 

Lessons learned: 

✓ Need for the development of structured data repositories with Industry4.0 and PdM datasets  
✓ Availability for testbeds for PdM, condition-based maintenance and intelligent asset management 
✓ Adjustment of AI-based Maintenance and Asset Management Systems  to facilitate accessibility by 

the non-experts 
✓ Standardization, data and semantics interoperability, as necessary enablers to support the diverse 

software, hardware as well as business process landscape in asset management. 

Recommendations: 

✓ Business models for Condition Based Maintenance and Intelligent Asset Management should be 
further investigated 

✓ Mobile Management  - Mobile-First Condition Based Maintenance are important concepts that could 
benefit the adoption of CBM and PdM strategies  

✓ Smart and Autonomous Objects should be further considered when it comes to data collection, 
inspection, data collection and communication.  

✓ Adequate actions for Training - Education - Lifelong Learning of people working closely with advanced 
data and Internet of Things technologies should be considered. 
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1 Introduction 

High added-value products manufacturing methods are undergoing a continuous evolution nowadays 
aiming to get higher productivity rates, product quality and reduction of defective products. Achievable 
production rates in a manufacturing system are significantly affected by the reliability of the equipment 
(Chryssolouris 2006). The adaption of efficient maintenance strategies is a key element for industries, to 
provide them with competitive leverage against overseas industries. Manufacturers simply cannot afford 
to perform corrective maintenance actions only when they have a costly critical failure. Furthermore, they 
cannot rely on time-based preventive maintenance strategies since the results of such approaches are 
vulnerable to unexpected variations in process parameters that are related to tool and machine 
conditions, material quality and human intervention. These factors affect the effectiveness of time-based 
preventive maintenance, leading to unforeseen costly failures. The problem with conventional preventive 
maintenance is that schedules and tasks are based primarily on assumption and estimation, rather than 
data-driven facts. Nowadays manufacturing companies increasingly use condition monitoring solutions 
and PdM solutions to guarantee the intended usage of production equipment and to avoid unplanned 
downtimes. Condition-based monitoring (CBM) is the process of monitoring and assessing the status of 
assets. Based on condition monitoring and taking into account the planned manufacturing processes to 
be performed, a prediction of the Remaining Useful Life (the error-free operational period of the asset) 
can be estimated, and the maintenance tasks can be defined and planned accordingly. This process is 
referred to as “Predictive Maintenance” (PdM). Current solutions deployed on the factory floor are merely 
based on monitoring the condition of one or more parameters of the assets condition. Popular emerging 
technologies of recent times, tackling issues of optimizing capital equipment maintenance in 
manufacturing lines, are said to be the combination of Internet of Things (IoT) and Big Data Analytics. 
PdM, that is, the analysis of multiple sources of production data for predicting the needs and driving 
adequate maintenance activities was identified in a recent McKinsey Global Institute report as the most 
valuable application of the above-mentioned technologies (Snidermann et al., 2016; McKinsey Global 
Institute, 2015). It is suggested that the use of PdM could save up to $630 billion by 2025, by reducing 
maintenance costs by up to 40%. Considering the market projections, manufacturers are focusing on the 
development of integrated systems able to exploit in house production data to extend the production 
system life span, thus reducing production costs and maintenance downtimes, and consequently 
improving product quality and profitability. 

The purpose of this white paper is to share the ForeSee cluster understanding of future condition 
monitoring and PdM approaches for the factories of tomorrow and to provide recommendations on how 
to bring this vision into industrial practice. The white paper is structured as follows: in Chapter 2, the vision 
for PdM in manufacturing is presented. The chapter describes the ForeSee cluster’s vision of future factory 
PdM tools. Chapter 3 reports the key enabling technologies that can be utilised to implement the vision 
for PdM in factories. Chapter 4 provides insight and lessons learned by applying the technologies 
described in chapter 3 on several ForeSee cluster projects’ industrial pilot cases. The challenges, solutions 
and impact of industrial pilot cases are described as well. Chapter 5 focuses on standardization challenges.  
In Chapter 6, recommendations are proposed to industry practitioners, regarding methods and 
technology adoption and integration of PdM. Chapter 7 provides recommendations for future research 
directions and innovation policy makers. 
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2 A vision for predictive maintenance in manufacturing 

2.1 Background – Current Trends in Maintenance 

The minimization of costs and the maximization of optimal reliability and production efficiency with a low 
environmental impact, as well as the safety of operations are increasingly important issues for every 
industry (Bousdekis et al., 2018). The Boston Consulting Group (2013) reports that improvements in 
maintenance productivity can enable 10-20% savings on labour, repair and maintenance (R&M) of parts 
and tools which together account for 15% of total costs for a typical organization. This means that 
improving maintenance can reduce conversion costs by 2-4% (McCarthy et al., 2013). Maintenance should 
thus be considered a key operation function of manufacturing enterprises (Peng et al., 2010), (Bousdekis 
et al., 2015). Its strategic position can greatly vary from one company to another – it can either be 
internalized using dedicated, in-house teams or either fully or partially outsourced to maintenance service 
providers. Maintenance touches all processes of a manufacturing company. Besides avoiding equipment 
breakdown, a sound maintenance strategy should be aimed towards improving business performance and 
maximising profits in terms of productivity, quality, and logistics management (Voision et al., 2010), (Van 
Horenbeek et al., 2013), (Aboelmaged, 2015). 

While industrial maintenance service providers have been used to an average annual growth rate in 
Europe of more than 6% since the early 2000s, the dynamic has tended to slow down since 2009. 
Moreover, the growth potential in the petrochemical and steel site maintenance segment, the sector's 
two main opportunities according to Xerfi (2019), is currently particularly low. Almost all companies have 
already outsourced these functions, only carrying out the exploitation of their operations. More than the 
high cost, the main obstacle is confidentiality. Companies do not want their manufacturing secrets to be 
disclosed by outside parties. The risks of loss, over the years, of technical expertise and know-how, are 
also put forward as reasons for not using maintenance subcontractors. 

As a result, the average outsourcing rate (share of activity outsourced to external companies) in the field 
of industrial maintenance in Europe has been capped at around 35% since 2010. According to Eurostat 
(2015), industrial maintenance, repair, and installation in Europe represented approximately 170 billion 
euros in 2015. The budgetary restrictions imposed by industrial firms have been particularly focused on 
maintenance, one of the main items of expenditure, which effects are not immediately quantifiable.  

Of course, the drivers of growth are less strong today compared to the prosperous periods of the 2000s. 
However, industrial maintenance professionals will always benefit from a comfortable growth rate. 
According to Xerfi estimations, the turnover of "unit outage" specialists averages 4.3% per year between 
2016 and 2018. It must be said that maintenance contracts run over several years, so operators in the 
profession benefit from recurring revenues and are therefore less sensitive to economic conditions. 
Moreover, with the improvement of their business prospects, contractors will have the means to be more 
aggressive, in particular, to implement new maintenance strategies, in connection with industrial 
modernization projects. 

The maintenance market is gradually maturing with common expertise and technical know-how no longer 
providing a competitive advantage to maintenance service providers anymore. Faced with market 
saturation and margins under pressure, subcontractors are easily replaced. In that context, maintenance 
stakeholders and new actors are seeking to expand their offer towards more remunerative services, 
particularly predictive maintenance (PdM). PdM is a strategy that has attracted high attention in recent 
years, leveraged by the introduction of information technologies in production facilities. It is recognised 
that the real maintenance revolution is the current and ongoing process (Algabroun et al., 2020), however, 
the involvement of artificial intelligence (AI) analytical models and machine learning (ML) algorithms 
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within the business processes is a nonstop improvement procedure, that will bring the PdM systems in 
the upcoming few years to its full development potential. 

Several market surveys indicate significant growth for the PdM market in the years to come even though 
the COVID-19 pandemic introduces a considerable degree of uncertainty when looking at prospects. ABI 
(2014) reported in 2016 that the investments in PdM reached €8.18 billion worldwide where the real 
growth of the PdM solutions could take charge based on the massification of deployed solutions, data 
collected as well as the use of sophisticated tools on data processing. Furthermore, the PdM advantage 
has increased the demand for the systems across the globe, stimulating market growth as reported in 
recent work by Market Research Future (Market Watch, 2019). Allied Market Research (2019) report 
estimates that the global PdM market size was valued at $2,804.38 million in 2018, and is projected to 
reach $23,014.7 million by 2026, growing at a CAGR of 30.20% from 2019 to 2026.  Similarly, Fortune 
Business Inside (2019) estimates that the global PdM market size was valued at $2,387.6 million in 2018, 
and is projected to reach $18,551 million by 2026, growing at a CAGR of 29,8% from 2019 to 2026. 
McKinsey Global Institute (2015) reports that PdM could save nearly €630 billion by 2025 with the IoT 
reducing the equipment downtime by up to 50% and reduce equipment capital investment by 3 to 5% 
while extending the operating life of the machines. 

 

2.2 Technological Drivers of Maintenance Strategies 

Maintenance strategies can be roughly placed into three categories: 1) Reactive (or curative or corrective)  
maintenance, 2) preventive, time-based maintenance and 3) condition-based, predictive and prescriptive 
maintenance (Bousdekis et al., 2015). Figure 1 shows an overview of these strategies with increasing 
optimisation of maintenance and decreasing ease of implementation from top to bottom. Even large 
companies yet to fully realised sensor-driven, real-time PdM strategies (Bousdekis et al., 2015). 

 

 

Figure 1: Types of maintenance strategies 

However, products are becoming more and more complex and quality and reliability are increasingly 
critical issues. This has led to an increase in the costs of time-based preventive maintenance, making PdM 
a more attractive proposition for today’s manufacturing industry (Jardine et al., 2006), with companies 
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increasingly turning towards PdM by utilizing the capabilities of condition monitoring. The main tools 
needed to implement new maintenance services already exist: sensors, PLCs, big data, IoT, AI, cloud 
computing. This makes it possible to detect faults before they occur, based on the information recorded 
by the sensors and the data history. 

Condition monitoring is today often achieved using sensors directly integrated into manufacturing 
equipment. These sensors are capable of measuring a multitude of parameters at a high frequency 
(Jardine et al., 2006), (I.O. for Standardization - ISO 13372:2012, 2012), (I.O for Standardization - ISO 
13379-1:2012, 2012). The cost of manufacturing sensors tends to be reduced thanks to improved 
production processes and economies of scale. The cost of sensors varies from few cents to thousands of 
Euros depending on their quality, the type of data they collect, the environment in which they are 
installed, their potential certification costs, etc. The cost of adding chips for capturing and wirelessly 
transmitting information from the physical world is becoming so low that any industrial equipment 
manufacturer may now wonder whether it is worth adding a form of "intelligence" to its products. The 
communication and storage of the huge amount of Big Data generated by these sensors pose significant 
challenges to the processing pipeline involved in analysing the data, extracting knowledge from it and 
finally making decisions (Bousdekis et al., 2015). 

Predictive maintenance in the industry has hitherto made use of conventional condition monitoring 
approaches such as vibration analysis, thermography, acoustic emissions, or tribology (ISO 17359:2011, 
2011). Today, data-based approaches are increasingly gaining momentum in the field of maintenance 
management which provide powerful tools for understanding the useful life of a system through dynamic 
pattern recognition. These approaches can contribute to determining the Remaining Useful Life (RUL), 
Remaining Life Distribution (RLD) and other KPIs, and to provide recommendations for maintenance-
related processes. 

The continuing adoption and evolution of the (Industrial) Internet of Things (IoT/IIoT) are giving the 
industry the means for enhancing its monitoring capabilities by extensively using physical and virtual 
sensors. In combination with advanced event monitoring and data processing systems, companies now 
have the potential to decide and act ahead of time, effectively solving problems before they appear (Engel 
et al., 2012). This means that failures can be completely avoided, or the consequences of a future failure 
mitigated before it takes place. 

The concept of E-maintenance reflects the convergence of these emerging ICT technology potentials with 
the systems which deal with management and planning of maintenance resources and services which 
together can enable proactive decision-making (Aboelmaged, 2015). The E-maintenance vision 
furthermore takes into consideration the integration of PdM workflows into the wider enterprise process 
and business landscape, echoing the above sentiment that maintenance should be considered a key 
operation function of manufacturing enterprises (Aboelmaged, 2015), (El Kadiri et al., 2016). Unlocking 
the full potential of PdM and its thorough integration into the wider business landscape of a company is 
a challenging process with many barriers to be overcome. 

 

2.3 Incentives and Barriers to Predictive Maintenance Adoption in Industry 

Traditional maintenance value drivers are the most prominent reasons companies plan to adopt PdM 
solutions according to a 2018 PricewaterhouseCoopers report (see Figure 2). Improving Overall 
Equipment Efficiency (OEE) is by far the most motivating reason, followed by costs savings, extending the 
lifetime of ageing assets, reducing health, safety, environment and quality risks, increasing end-customer 
satisfaction and, only in the last place, capturing new revenue streams. 
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Figure 2: Perceived Benefits of Predictive Maintenance Solutions (Source: PricewaterhouseCoopers BWC, 2018) 

The companies' reasons for not adopting PdM are manifold and help understand the barriers that need 
to be overcome for PdM solutions to be more widely adopted by the industry. 

The main factor is the perceived lack of resources and skills required to support deployment. Companies 
feel that they are already struggling with the level of skill required to support Industry 3.0 practices. Many 
companies consequently do not feel they are prepared in terms of resources and skills to tackle the 
problems inherent in a data-driven, Industry 4.0 application such as PdM. They prefer to invest in 
addressing more pressing issues such as ageing infrastructure, regulatory demands, and commodity 
pricing pressures – even though PdM could contribute to alleviating some of these issues. 

A further intrinsic challenge that hinders industrial adoption of predictive maintenance is the limited 
availability of data. Whilst current predictive PdM solutions deliver economic benefits when fully up and 
running, companies often experience that implementing the solutions in the first place can be more 
difficult and costly than expected. In particular, large companies need a significant amount of time and 
resources to collect, scrub, and share necessary data than a start-up needs to train the solution itself. 

The problem is even more pronounced in industries where data ownership is a concern. This is especially 
problematic in scenarios in which the operation and maintenance of assets and thus data ownership may 
be split across different parties. It is also a challenging issue where legacy assets are prevalent, which is 
often the case. Although sensor and data management technology costs are sinking, and increased 
connectivity and the adoption of standard platforms are helping to alleviate these challenges, it is still 
unclear who will eventually own the data and if analytics application providers require access to data to 
build mature solutions. A related issue is that of data security. The potential lack of guarantees from 
current cyber security technologies on their effectiveness in data protection in Industry 4.0 applications 
is a further barrier towards the widespread adoption of PdM solutions (Roda et al., 2018). 
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Another factor hindering adoption is a disconnect between development and evolution cycles in the IT 
and the industrial sectors. The IT industry is used to rapid cycles of product evolution, where today’s state-
of-the-art can be expected to be out of date within three years. In the manufacturing and wider industrial 
world, these cycles of development can take up to 40 years, especially where critical equipment is 
involved. As a result, many industrial companies postpone adopting new technologies, because upfront 
costs are expensive, technologies may not be proven, and leaders may be reluctant to change processes 
that may have been intact for over 30 years. Ironically, the lure of new features and the dynamic pace of 
change in predictive maintenance causes many industrial companies to delay decisions until it's too late. 

PdM solutions typically require a high degree of vertical customization. Specific models often have to be 
developed for each use case. This model-driven approach offers a high degree of accuracy, but at a high 
cost - the lack of horizontal replicability across industries reduces economies of scope and hinders 
widespread adoption. Furthermore, developing new models for each specific use case is laborious and 
cost-intensive. This partly explains why condition monitoring – which is largely a horizontal and repeatable 
solution – is more widely adopted. The industry is changing, however, as a newer generation of solutions 
driven by artificial intelligence and data-driven machine learning approaches that accelerate deployment 
and training cycles. 

Furthermore, PdM solutions need to address a richer array of business problems and offer actionable 
decisions and solutions to users, not simply flag failures. We are starting to see this happen as predictive 
and prescriptive maintenance applications integrate ever-larger sets of input - delivering more useful 
output not just at the asset level, but for the factory and eventually the enterprise.  

 

Summary of Gaps and Challenges: 

• The benefits of PdM need to be better communicated to the industry, especially with regards to 
opportunities beyond traditional maintenance value drivers. 

• The effort required to make data available for PdM needs to be reduced. 

• Data ownership and data security issues need to be clarified throughout the PdM and by extension 
Industry 4.0 data value chains. 

• PdM solutions need to be reliable and future-proof to attract industrial customers. 

• The speed and efficiency of replicability of PdM solutions across use cases and sectors need to be 
increased. 

• The output of PdM systems must be actionable decisions and solutions on the asset, factory, and 
enterprise levels. 

 

Related Key Enablers: 

• (Industrial) Internet of Things (IoT/IIoT) 

• Data-driven analytics 

• Proactive Computing 

• Augmented and Virtual Reality (AR/VR) 

• Linked Data 

• Standardisation and Interoperability 

• Skilling of Personnel 
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The following sections provide more detail about the potentials of PdM, as well as the gaps and challenges 
remaining to be addressed. The sections follow the phases of the proactive computing paradigm adopted 
by PdM (Bousdekis, et al., 2018), preceded by the generation of data: 1) detect events and situations, 2) 
predict future undesired events, 3)  decide recommendations that are going to be provided, and 4) act by 
enacting the decision taken to adapt the operating system and by collecting feedback to improve the 
recommendations. A further section takes a look at the role of interoperability and standardisation in 
PdM. 

 

2.4 Data Acquisition - Digital Transformation Strategies for Predictive Maintenance 

The digital transformation of manufacturing is the foundation upon which condition-based maintenance, 
and, by extension, PdM is built. Digitalised manufacturing means manufacturing in which the physical 
world is connected to the virtual world (Lundgren et al., 2020). Assets need to be able to measure their 
operating parameters and communicate them to software systems able to interpret, analyse and put 
them into relation with each other, to extract actionable knowledge about maintenance needs and 
expectations. 

On the most fundamental level, this means that assets to be maintained need to be equipped with 
networked sensors capable of measuring the relevant parameters. Legacy assets need to be retrofitted, 
or new assets to be procured with integrated sensors. Without an appropriate strategy, the costs for 
digitizing manufacturing assets run the risk of outweighing the benefits expected from a PdM solution. 

The digitization of manufacturing assets requires an appropriate strategy both with regards to the 
selection and integration of the sensors as well as the downstream IT systems to achieve a maximum 
return on investment. Although standardised solutions are available, they are seldom used in practice. 
Rather, vendors pursue the creation of closed ecosystems, to maintain data governance. This approach 
often does not benefit smaller and midcap manufacturers seeking to digitize their operations. Open and 
standardised data ecosystems are a more viable approach that needs to be fostered and implemented to 
allow for data reuse and collaboration on both the acquisition and enrichment of sensor data across 
multiple stakeholders. 

The digital transformation of manufacturing assets for PdM can easily become a chicken-or-egg situation, 
in which the decision about what comes first – the data or the algorithm – becomes a dilemma. One 
strategy is to first build an initial data set based on common knowledge and educated guesses to then 
analyse it and build algorithms around this data set. The opposite approach is to start from the problem 
at hand and develop an appropriate algorithm, thus determining the necessary measurements and data 
set, which finally leads to the selection of sensors for retrofitting or specific new digitized assets. The 
former approach can be more relevant to smaller enterprises who want to implement a solution for very 
specific problems, whereas the latter approach can be more attractive for large enterprises planning a 
more comprehensive digital transformation. 

A similar dilemma is reflected in the landscape of available solutions. Currently, the industrial state of the 
art for the acquisition of data both from existing asset systems as well as dedicated sensors is driven by 
the hardware manufacturers and system integrators on the one hand and IoT platform providers on the 
other. Both types of drivers have a prejudice for either a data source (i.e. sensors) or data sink (i.e. IoT-
Platform). This results in a widespread, heterogeneous landscape of “peninsula” solutions. 

The middle ground between these two approaches is currently occupied by consultancies and solution 
providers who adapt available solutions for specific use cases. At the same time, there are several 
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consortia, mostly community-driven by Open Source, such as the Open Geospatial Consortium (OCG) or 
The Open Group (TOG), which push the development of unified standards not only for the technical 
communication layers but also context and meta layers. These consortia are laying the basis for unified 
data acquisition architectures. 

These competing strategies for the digital transformation of manufacturing assets are not exclusive to 
PdM and can be observed in different sectors with terms like “brownfield VS greenfield” or “cost-push VS 
demand-pull” development. An exclusive hard decision for either one of the approaches is not mandatory, 
but in most cases, an iterative combination of both can be a suitable approach. 

While several flexible approaches are addressing the shortcomings of choosing either of the two prevailing 
strategies, the challenge is to involve the established players in them, so that a good adoption rate and 
market penetration can be achieved. Thus, fostering these approaches and integrating them into the 
prevailing solutions (both with data sources as well as sinks) is one of the main tasks towards a flexible 
DAQ landscape. This cannot be achieved merely through the development of technical standards but must 
be driven by business models which utilise the additional benefits, flexible and vendor-agnostic 
architecture can offer. Since this will – at least initially – contradict the legacy business models of different 
stakeholders, a fair and flexible approach for revenue sharing in an increasingly complex structure must 
be investigated. The complex production and logistics supply chains of the modern world provide a 
plethora of approaches that should be investigated. 

Since the digitization of industrial assets should never be an end on itself, but rather aim towards a higher 
goal and comprehensive business strategy, the vision for it must be to offer maximum information not 
only at minimal cost but also with minimal impact on the adjacent systems and with a maximum benefit 
to the enterprise as a whole. It is therefore of paramount importance that data acquisition systems and 
architectures do not restrict the choice and configuration of both the systems providing the data and 
consuming it more than necessary. To this end, vendor lock-in should be avoided, and well documented, 
open interfaces must be defined and put in operation. This can only succeed if technical standards are 
accompanied by sound business models which integrate the needs of the prevailing stakeholders. The 
development and implementation of these business models is consequently a vital aspect. 

Summary of Gaps and Challenges: 

• The current market is dominated by vendor-specific digitization solutions, leading to vendor lock-in 
and inefficient solutions especially for SMEs 

• Open, flexible, and vendor-agnostic architectures need to be fostered to maximise the benefit of 
digitization for a majority of stakeholders 

• Digitization should not be an end in itself, but always be aligned with a comprehensive digital business 
strategy 

 

Related Key Enablers: 

• IoT/IIoT 

• Standardisation and Interoperability 

 

2.5 Detection as a Cornerstone of Predictive Maintenance 

PdM in general describes strategies and actions to prevent breakdowns of technical equipment by early 
intervention in degradation processes or failure situations. To do so, PdM strategies may implement 
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regular time-based observations. However, with the increased availability of sensors and embedded 
computing systems integrated into the assets under maintenance as described in the previous section, 
PdM is most often understood to be a data-driven strategy that relies on sensor and database condition 
monitoring. In simple terms, the first objective is to identify abnormal behaviour of technical equipment 
by preferably continuously observing sensor data streams. 

Detection algorithms in data-driven PdM have the task to process raw data to get information about the 
condition of the components of technical equipment. Different algorithms are available for that purpose 
with essentially two objectives, namely the detection of the current state of an asset and a prediction of 
the future state of equipment. Detection borders on diagnosis as it aims not only to detect abnormalities 
but also to deduce the failure causes from symptoms such as noise, vibration, temperature changes, etc. 
in the sensor streams. Detection can further be decomposed into several sub-functions: a) the capability 
to identify abnormalities and recognize relevant patterns in data streams generated by digitized assets, 
b) the capability to classify patterns according to modes of failure, and c) generating a reliable assumption 
about the root causes of failure modes. 

The next step after the pattern recognition is usually the classification of the pattern according to various 
categories or classes. As far as maintenance is concerned, this is, in the simplest case, subdivided into 
"faults" and "in order" or into other previously specified categories. Accordingly, defect classification is 
often seen as part of pattern recognition but follows with regard to the methodological procedure of 
extraction of the features (Clarke, 1974). Scientific literature distinguishes between whether algorithms 
and methods used for classification are discussed on the premise of an existing meaningful feature vector 
or if its derivation is part of the work. While feature extraction often requires customization, the actual 
classification algorithms are generally usable. 

Classification generally refers to the assignment of objects with certain characteristic values to classes. In 
the history of science, different approaches to the automated assignment of objects have been 
developed, which can largely be assigned to artificial intelligence. Artificial neural networks have gained 
a great deal of attention, which, in the sense of bionics, mimics the processes of nature for the design of 
neural structures for the classification of objects (Kriesel, 2017). Different classification methods exist, 
each with its strengths and weaknesses. 

After the classification of an object with certain characteristic features, it is usually of interest to interpret 
this object or the recognized pattern and to obtain an explanation for the symptoms. The aim is to be able 
to take measures in the medium term to avoid recurring causes. In maintenance, after automated 
detection, it is also of interest to know the specific causes responsible for the observed symptoms to train 
the detection process. 

For more in-depth causal diagnosis based on various observations, extensive experience and problem-
specific specialist knowledge is generally required, which as a rule can only be provided by very 
experienced staff (Moczulski, 2004). Nevertheless, the idea of an automated root cause analysis or at least 
a corresponding expert support is not new, so that different methods have been established in different 
fields of application (Cholewa, 2004). However, due to various technical requirements, these are still 
rather rare in practical application. 

A robust diagnostic approach is vital for PdM since the uncertainties of the estimated system condition 
affect any future prediction (Jardine et al., 2006; Hess et al., 2006; Patrick et al., 2009). Most challenges 
towards reliable diagnostic approaches lie in verification and validation (Vogl et al., 2019). Due to the 
complexity of manufacturing systems, simple diagnostic models are often inadequate. This means that 
diagnostic methods need to be able to deal with uncertainties resulting from complexity (Vogl et al., 
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2019). Without robust, verifiable, and validated diagnostics, prognoses and consequently, maintenance 
decisions made based on PdM can lead to false alarms, diminishing the usefulness of the entire system. 

 

Summary of Gaps and Challenges: 

• The quality of the chosen diagnostic approach is fundamental to the quality of predictions generated 
by a PdM solution 

• Robust, verifiable, and validated methods need are required for widespread industry adoption 

• In-depth causal diagnostics require in-depth, problem-specific expert knowledge, which means that 
engineering expertise is required in the definition of diagnostics approaches 

 

Related Key Enablers: 

• Data-driven analytics 

• Skilling of Personnel 

 

2.6 Prediction – Forecasting the Future State of Assets 

PdM strategies that are based on the understanding of processing sensor data to derive information on 
possible abnormalities and prospective failures may include processing capabilities to estimate trends and 
Remaining Useful Life (RUL). The category of algorithms used to forecast the future state of assets is 
accordingly called prediction or prognosis. In simple terms, this builds on the objective described above 
of diagnosing the state of an asset by identifying abnormal behaviour, predicting possible future 
conditions by continuously observing sensor data streams and by considering historical data. 

Prediction algorithms in data-driven PdM process raw current and historical data in order to provide a 
sound guess about the future condition of assets or their components. Prognosis is the prediction of 
conditions and events through the sensor data streams. Broken down into its sub-functions, prediction 
accordingly consists of a) time-series analysis and prognosis as well as b) the capability to estimate the 
Remaining Useful Life of the assets or components. 

The analysis of time-series and forecasts based thereon take on a decisive role in the automatic condition 
assessment of technical systems. Based on sensors, which usually supply value pairs consisting of a time 
stamp and the corresponding measured value, an attempt is made to predict the future trend of the 
observed time series. In this way, deviations from normal operating conditions can be recognized early 
and considered in the diagnosis. Another field of application is the analysis and prediction of the 
degradation of components (Denkena, 2010). 

Successful applications of time-series analysis can be found in the financial sector, where the analysis and 
forecasting of market developments are of interest. The methods used there have been transferred 
successfully for the analysis and prognosis of machine-related data (Patrick et al., 2009; Volg et al., 2019; 
Denkena et al., 2010). The methods of time series analysis can be subdivided into frequency and time-
related analyses. The former is established in the engineering field for a wide variety of applications, for 
example for the interpretation of vibration processes. In addition, the methods of time-related analysis 
of time series are usually based on regression, correlation, and mean calculations (Box et al., 2011). 

One objective of predicting a long-term system behaviour is the estimation of a Remaining Useful Life 
(RUL) for the systems or components as well as the estimation of a confidence interval, which applies to 
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this prediction. The most accurate estimation possible with a small confidence interval is the difficult 
challenge in the residual lifetime estimation (Xiongzi et al., 2011). RUL describes a period between the 
current and the future time, which defines the end of the useful lifetime. The concept is based on the fact 
that the quality of the system decreases with time and thus passes through the phases "OK", "Warning", 
"Ideal Repair Period" and "Error" (Xiongzi et al., 2011). Different methods are available to estimate RUL 
(Anagiannis et al., 2020; Bampoula et al., 2021; Aivaliotis et al., 2019; Aivaliotis et al., 2020; Aggogeri et 
al., 2019). 

In addition, outputs or results of the different methods can also serve as input of a further method, which 
leads to cascaded calculations. From an application-oriented viewpoint, the exact configuration of 
calculation runs must be provided during the selection of the appropriate methods. Corresponding to this 
task, therefore, respective instances are to be created and defined which, accordingly parameterized, 
analyse one or more input data series. Therefore, the combination of several simple procedures, as well 
as the use of more complex calculation algorithms in a system, must be enabled. These are timed or 
triggered by an event, for example, a new data record. As a prerequisite, a collection of methods is 
required, as well as, a platform for their use and configuration with regards to the available data. The 
challenge here is, however, to aggregate the sometimes-ambivalent results of the methods into a residual 
lifetime or a relevant business event. In the case of complex technical systems with several modules or 
components, the status evaluations for the individual components must then be combined with the state 
evaluation of the entire system. 

While promising approaches have been scientifically investigated and developed for various challenges of 
the state determination of single components, such a discussed integrative approach to the state 
determination of complex technical systems has so far been considered less frequently. Modular concepts 
effectively linking different heterogeneous sensors for condition detection and different technologies, 
methods and algorithms for the condition evaluation are lacking. 

Summary of Gaps and Challenges: 

• Integrative solutions to determine and forecast the state of complex systems need to be developed 

• Modular concepts are required 

 

Related Key Enablers: 

• Data-driven analytics 

• Proactive Computing 

• Skilling of Personnel 

 

2.7 Actionable Decisions on all Levels of Maintenance 

As described above, the core functions of PdM solutions lie in identifying the current condition of an asset 
and accurately forecasting its degradation or potential faults for better planning of maintenance activities. 
Whilst these functions in themselves offer significant value to manufacturing companies, they can only do 
so when predictions are translated into actionable maintenance decisions. 

One pathway to actionable maintenance decisions lies in the interpretation of predictions by maintenance 
experts, who can define operative maintenance tasks based on their knowledge and experience. This 
means that maintenance experts need to be able to understand the outputs of the prediction algorithms 
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to apply their knowledge in the decision-making process. This requires that maintenance experts extend 
their skill base towards data science. 

Another preferable pathway is that the PdM system is capable of not only predicting when a failure is 
likely to occur but also proactively recommend the best action for completely avoiding or mitigating the 
impact of the predicted events (Bousdekis et al., 2019; Christou et al., 2020a).  Optimally, it should even 
be capable of automatically issuing the corresponding work order (PricewaterhouseCoopers BWC, 2018). 
The development of appropriate methods and algorithms for decision-making is driven by the increasing 
complexity and uncertainty found in today’s manufacturing environments. The uncertainty is inherent to 
predictive analytics and degradation processes as well as the time constraints under which a decision 
needs to be taken pose challenges in the applicability of decision-making algorithms (Bousdekis et al., 
2019). Often, decision-making algorithms for PdM are restricted to specific problems, domains, and 
industry sections, or only applicable under certain assumptions. They are thus difficult to apply to different 
production processes. 

This means that knowledge about appropriate maintenance actions for individual fault states needs to be 
introduced to the system, meaning intense cooperation between maintenance experts and system 
developers or configures needs to take place. However, maintenance decision-making is not an 
extensively explored area (Bousdekis et al., 2018) and the availability of maintenance decision-making 
applications is limited, and even experienced engineers in capital intensive and high revenue industries 
have little experience with such tools. In addition, supervised learning loops may be implemented, 
allowing maintenance experts to introduce new rules into the system as faults occur or develop. However, 
continuous learning and improvement of the recommendations have not been thoroughly examined yet 
(Bousdekis et al., 2018; Ruiz et al., 2014). 

Besides the ability of the PdM system to provide accurate and actionable recommendations about 
maintenance tasks, how the tasks are communicated to the maintenance experts need to be tailored to 
the needs of the recipients involved in maintenance tasks. These recipients include maintenance 
managers, maintenance operators and shop-floor staff. 

Maintenance managers, who are responsible for maintenance planning and take operative decisions 
about maintenance tasks, require different levels of information. On the one hand, they require an 
appropriate overview of the current and predicted condition of all assets under their responsibility. They 
also need to dig deeper into the data to analyse the detailed condition of individual assets, their 
maintenance history, and prescribed maintenance tasks. The ability to zoom into different levels of 
analysis and prediction along with tools that allow the identification of possible relationships between 
different faults, usage parameters and behaviours are required to assist them in identifying root causes 
and planning maintenance tasks. Tasks prescribed by the PdM system should be able to be modified or 
updated based on their expert knowledge and experience, contributing to the system’s self-learning loop. 
Since maintenance managers are often responsible for a large number of assets and often very mobile 
throughout the company, appropriate means of communicating this information besides advanced 
visualisation at the desk include multi-channel, mobile devices. 

Maintenance operators might require detailed information about how a specific maintenance task should 
be carried out. This might entail detailed instructions about how a part of a machine needs to be serviced, 
or how a faulty part should be removed and a new one installed and tested. This specialised information 
is generally part of the repair or installation manuals. The availability of automatic maintenance task 
prescriptions by the PdM solution creates the opportunity for a context-aware, digital communication of 
instructions on the job. However, the lack of skills and abilities of operators with regards to digital 
technologies presents makes the application of IT in this area challenging (Roda et al., 2018). Digital 
technologies need to be selected which can be used intuitively, without the need for in-depth IT skills. 
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Appropriate Key Technical Enablers include Augmented Reality (AR), Virtual Reality (VR) and Digital 
Intelligent Assistants (DIAs). They can be applied on the job or in training to assist personnel involved in 
maintenance activities and can be leveraged to provide the relevant to maintenance operators in an 
intuitive way, accelerating operative maintenance processes and increasing their efficiency and quality. 

Shop-floor staff might need information about changes in how a machine should be used when it is faulty, 
or parts are progressing in degradation. Last but certainly not least, health and safety information 
concerning faulty equipment needs to be appropriately communicated.  

Summary of Gaps and Challenges: 

• The interpretation of the results of diagnosis and prognosis algorithms may require maintenance 
experts to extend their skill base towards data science 

• PdM solutions need to provide clear, actionable, and comprehensible maintenance decisions 

• (Supervised) self-learning loops for maintenance recommendations need to be thoroughly examined 

• Technologies employed in PdM solutions need to cater for different skill groups who are involved both 
in maintenance decision-making and operative faculties 

• Context-aware maintenance instructions should be given at all levels of maintenance, leveraging 
appropriate human interaction technologies such as AR/VR, AI-driven Digital Intelligent Assistants, 
and advanced visualisation capabilities 

 

Related Key Enablers: 

• Proactive Computing 

• AR/VR, DIAs 

• Skilling of Personnel 

 

2.8 Standardisation and Interoperability 

As discussed above, maintenance processes, and by extension PdM, must be considered a key operation 
function of manufacturing companies. That means that a PdM solution should not be treated as a stand-
alone system but rather seamlessly integrate into the company’s manufacturing system and process 
landscape to optimally contribute to its overall digitization strategy.  

The broad adoption of sensor technology in the industry has led to a vast increase in the volume of 
numerical data. On top of that, additional maintenance-relevant information and knowledge are stored 
and processed in different types of systems throughout the enterprises, such as CMMS (Computerized 
Maintenance Management Systems), PPS (Production Planning Systems), MES (Manufacturing Execution 
Systems), logistics and quality management systems. In many companies, maintenance-relevant 
information is still captured, processed, and documented with spreadsheet applications or even simply 
on paper. Stakeholders outside of the company, such as machine vendors or product consumers, can also 
provide relevant information. Last but not least, the experience of maintenance experts and other 
stakeholders directly or indirectly involved in maintenance processes should be considered valuable 
resources of information and knowledge. Many of these sources are not easily integrated into e-
maintenance systems. The efficient aggregation, extraction and visualisation of the relevant information 
and knowledge are thus key technologies for the extraction of maintenance-relevant information. 

Standardisation and interoperability are two interrelated topics that can facilitate that integration 
(Keraron, 2018). On the one hand, some relevant standards are available in the maintenance and 
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manufacturing domains which need to be leveraged to align PdM with existing domain models and 
knowledge. These standards may be used to inform the fundamental models on which PdM solutions rely 
to structure data and exchange it with other processes in manufacturing and throughout the company. In 
addition, relevant standards for the definition of maintenance information system architectures exist, 
which should be applied in the design of PdM systems and if necessary extended to reflect specific 
properties of these systems not yet addressed by the standards. For example, data models for PdM system 
architectures may be appropriately defined following the functional blocks of ISO 13374 Condition 
Monitoring and Diagnostics of Machines (I.O. for Standardization, 2003) for data processing in 
combination with the compliant MIMOSA OSA-EAI CM&D (MIMOSA, 2014) information architecture 
specification.   

With regards to inter-process and inter-organisational interoperability, and to ensure the transferability 
of a PdM solution from one use case or sector to another, PdM data models should furthermore comply 
with standards on maintenance terminology. Maintenance terminology is currently defined in dedicated 
standards, including EN 13306 Maintenance Terminology (CEN EN, 2010) or ISO 13372 Condition of 
machines and Diagnostics of Machines - Vocabulary (I.O. for Standardization, 2012), or in various ISO and 
IEC standards such as  IEC 60812 Failure Modes and Effects Analysis (FMEA and FMECA) (I.E. Commission, 
2018). Many other relevant standards exist for the scope of processes, methods and tools involved in a 
PdM approach, for instance depending on the techniques used for equipment health monitoring. 

The second dimension of standardisation and interoperability is influenced by the digital transformation 
of manufacturing and in particular the rapid evolution of both de-facto and formal standards emerging in 
the field of the Industrial Internet of Things (IIoT). Here, many new standards, reference models and 
architectures with the potential for enabling interoperability are being developed. One example is AMQP 
(AMQP Advanced Message Queuing Protocol – ISO/IEC 19464:2014) (I.O. for Standardization, 2014), 
which can be used to integrate the functional blocks of a PdM approach. However, the rapid evolution of 
these standards and their fast proliferation, in conjunction with a lack of experience about how to 
implement these reference concepts, models and standards currently leave the industry with little solid 
ground upon which to make decisions. Moreover, competing national and international initiatives such as 
the US IIoT, the German Industrie 4.0, and the Chinese Cloud Manufacturing approaches complicate 
matters even further. A recent study on the future of maintenance within Industry 4.0 underlines the 
industry’s current dissatisfaction with the lack of widespread standard solutions for new technologies 
(Roda et al., 2018). That means that more research and standardisation effort is required to pave the way 
towards reliable recommendations for industry to ensure future-proof interoperability strategies. 

Other advanced means for interoperability are coming up from the semantic web technologies as 
ontologies, with efforts in the various manufacturing domains including maintenance with the Industry 
Ontologies Foundry initiative. These efforts are long term efforts of research and need more industrial 
feedback before implementation in a robust industrial platform.  In chapter “5 Standardization ” the 
challenges and experience of the Foresee projects with regards to the standardization are presented. 

 

Summary of Gaps and Challenges: 

• PdM solutions need to be seamlessly interoperable with manufacturing processes and systems to 
ensure maximum benefit throughout the company 

• Existing maintenance-relevant standards should be leveraged and, if necessary, extended to ensure 
process and IT interoperability 

• Future-proof, data-driven PdM solutions and strategies require reliable recommendations about 
technical standards for IIoT ecosystems 
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• Advanced semantic models for PdM need to be developed to ensure future-proof, cross-domain 
interoperability 

 

Related Key Enablers: 

• Standardisation and Interoperability 

 

2.9  ForeSee Predictive Maintenance System Reference Architecture 

Figure 3 below shows the ForeSee Predictive Maintenance System Reference Architecture, which is based 
on the results of the six projects involved in the ForeSee cluster. It intends to outline mandatory and 
optional components of a PdM system, whilst abstracting from implementation details. The reference 
architecture is composed of three vertical sections, from left to right: 1) the manufacturing ecosystem, 
which contains the physical and virtual components of the system for which PdM is to be implemented; 
2) the data acquisition and interoperability slice, which managed the link between the manufacturing 
ecosystem and the PdM system itself, and 3) the PdM system, which implements data storage, analytics 
and decision making on streaming and batch data, as well as human user’s interactions with the system. 
The components of the reference architecture are described per slice in more detail in the following. 

 

Figure 3: ForeSee Predictive Maintenance Reference Architecture 
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Manufacturing Ecosystem 

The manufacturing ecosystem contains three elements that are relevant to implementing PdM. First are 
the production system(s) and their respective assets for which the system should provide PdM. This 
includes control systems and sensors, which may need to be retrofitted, which supply the PdM system 
with appropriate, preferably real-time streaming which can contribute to an understanding of the 
systems’ and assets’ condition. Second, the enterprise systems either contain relevant information about 
the production system(s) and/or contribute to their management or the execution of production plans. 
Information stored in these systems (e.g. production plans, maintenance reports) may augment the 
sensor data in helping understand the historical condition of the systems and assets. Last but not least, 
the human users involved in processes of production and maintenance management, planning, 
optimisation and execution, for example, engineers, operators and managers. 

Data Acquisition & Interoperability 

Both streaming sensor data and batch information made available by the production systems and the 
enterprise systems need to be accessed by the PdM system, for which they need to be appropriately 
gathered, pre-processed and forwarded to the system. 

For streaming sensor data, this is done via local IoT hubs, which implement IoT gateways to access the 
sensor data. Streaming sensor data may then be optionally pre-processed on the network edge. Data 
cleansing, outlier detection, or initial data analytics are examples of pre-processing which can be carried 
out in an edge processing component. Finally, the streaming sensor data is pushed into the PdM system 
via a component such as a streaming message broker. 

Batch data coming from enterprise systems generally need to be mapped onto the data models of the 
PdM system before it can be appropriately analysed. For this reason, a component is required for the 
semantic uplifting of the data before it can be stored in the storage component.  

Predictive Maintenance System 

The PdM system consists of several sub-elements which are described in the following paragraphs. Each 
of these components may be implemented on local hardware or hosted on a cloud computing facility. 

(Cloud) Storage 

The storage element is responsible for storing all types of data to be processed or generated by the PdM 
system. All of these types of data are structured according to data models, which may follow established 
standards such as MIMOSA and/or reflect FMECA models of the assets under maintenance. Data coming 
from the manufacturing ecosystem will generally be forwarded to these storage elements, for further 
processing by the stream and batch processing components respectively. 

Three types of data can be differentiated and depending on the PdM system’s specific implementation, 
respective databases will be required: 1) time-series data, which represents streaming sensor data and 
events detected and predicted by the PdM system; 2) semantic triples resulting from the semantic uplift 
of legacy data which can be stored in a Triplestore; and 3) relational data for storage in a relational 
database, comprising all types of information not already handled by the time series DB or Triplestore. 

Stream Processing 

The stream processing element includes functionalities responsible for analysing stream data typically 
generated by sensors installed in the end user’s assets. This data can be augmented by historical data 
generated from batch processing components (see below). Stream processing consists of a component 
for condition detection & diagnosis and one for condition and RUL prediction, providing forecasts for 
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feature values of sensor data. These can be monitored to identify possible outliers that may denote 
malfunctions or, more generally, abnormal behaviour. Moreover, stream processing provides predictions 
of future events such as RUL that trigger the processes in the Decision-Making element to provide 
prescriptions for maintenance plans. Stream processing receives sensor data stored in real-time in the 
time series storage and generates predictions based on the chosen algorithm. The results of stream 
analysis, both from the diagnosis and prognosis components, will generally be a time series of events. 
Both the detection and diagnosis as well as the prediction component may use a streaming message bus 
as a shared integration point to communicate these events. A typical message from these components 
contains both the notification of a new event and a payload with the contents of the new event or 
prediction. Feedback loops to the storage component and the enterprise systems allow direct integration 
of the results of the PdM system and may be used to implement self-learning loops.  

Batch Processing 

Batch Processing is responsible for analysing legacy and operational data and providing information about 
the monitored system, such as clusters of correlated interruptions and/or failure modes, predictions 
based on past maintenance data, etc. Other platform functionalities depend on the results generated 
from batch processing to provide more accurate results – decision making and stream processing, for 
example, may give more accurate recommendations and predictions if results of the historical analysis 
are included in the relevant models. As with the stream processing component, feedback loops to the 
storage component and the enterprise systems allow direct integration of the results of the PdM system 
and may be used to implement self-learning loops.  

Decision Making 

The proactive decision-making functionality of the ForeSee predictive maintenance reference architecture 
should implement prescriptive analytics for proactive decision making in PdM. It provides prescriptions 
about optimal maintenance actions and times based on predictions about future failures, to eliminate or 
mitigate their impact. The prescriptions deal with sets of actions that are related to sets of predicted 
failure modes (e.g. when two failure modes usually occur together). Decision methods that can be 
implemented here include (i) model-based (DM1) Markov Decision Process (MDP); and (ii) model-free 
(DM2) Reinforcement Learning (RL) with human feedback. Upon user feedback, it formulates and updates 
the maintenance plan. Users can interact with the decision-making component via appropriate 
visualisation in the user interaction element. Configurable rules and actions are available to the user. 
Then, after recommendations about proactive actions, the user is given options to either reject or approve 
them. This feedback is considered for future prescriptions, while, in case of approval, the recommended 
actions are inserted into the maintenance plan. 

Decision-making in the ForeSee predictive maintenance reference architecture not only relies on the 
prediction of failures and RUL stemming from the stream processing components; it also (optionally) 
considers maintenance schedules, production plans, spare parts and resource logistics, and refurbishment 
plans. The required information can be provided via the analyses carried out in the batch processing 
component based on information acquired from the respective enterprise and legacy systems. 

The risk assessment functionality provides a criticality rating for each component of a system, as well as a 
rating for each component’s failure modes. The risk assessment is data-driven and based on FMECA 
analysis coupled with the current detected and/or the predicted state of the manufacturing system based 
on the results of the streaming and batch processing elements. 

Feedback loops to the storage component and the enterprise systems allow direct integration of the 
results of the decision-making component and may be used to implement self-learning loops.  
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Multi-channel User Interaction 

Interaction with the PdM system needs to be tailored to the needs and qualifications of the various human 
actors involved in maintenance-related activities. It should furthermore be agnostic to the actors’ physical 
locations. The ForeSee reference architecture thus includes multichannel user interaction, via channels 
such as conventional desktop applications, mobile apps, web applications, and AR and VR interfaces for 
intuitive maintenance action guidance at the asset-under-maintenance. Appropriate interfaces and 
visualisation are made available for all underlying elements – real-time monitoring provides easy insight 
into the current and predicted future status of assets and the whole production system, with alert 
functionality available to indicate critical issues in real-time. Maintenance engineers and managers can 
use the maintenance planning functionality to schedule maintenance suggested by the decision-making 
component. Maintenance execution support, such as repair instructions, can be given to operators on the 
shop-floor, using AR and VR to implement intuitive and easy-to-understand instructions or visualise 
existing failures. Explorative analysis tools are provided to help maintenance engineers and managers drill 
down deep into the data in an intuitive way to better understand the context of complex maintenance 
issues. Generating reports is a standard functionality which nevertheless is required to document issues 
and maintenance activities. Last but not least, configuration interfaces are provided for example to design 
and configure analysis calculation flows by data scientists and engineers, to model assets, and configure 
all relevant system parameters. 

RAMI 4.0 Compatibility 

The ForeSee predictive maintenance reference architecture is compatible with the RAMI 4.0 reference 
architecture. Figure 4 below outlines how the elements of the ForeSee reference architecture map onto 
the layers of RAMI 4.0. 

 

Figure 4: ForeSee Reference Architecture Elements mapped against RAMI4.0 Layers 
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3 Key-enablers for predictive maintenance in manufacturing  

Faced with mounting pressures caused by the shortage of skilled workers, budget cuts and ageing assets, 
predictive maintenance (PdM) software represents a powerful tool to aid manufacturers in easing their 
maintenance burdens, by reducing costs and improving the productivity of their production processes. 
With a wealth of case studies and proof points available in many other analogous industries, attractive 
potential benefits await the manufacturing sector should it embrace the latest trend in maintenance 
strategy. Given that Predictive Analytics can help organizations in multiple ways, it is no surprise that 
organizations are looking for effective ways to build their predictive analytics footprint. However, some 
enablers are required to ensure efficiency and effectiveness. 

First and foremost are the data capture and the required technology environment. Data availability and 
sufficiency is the biggest precursor to successful model building. There will be times when the relevant 
data points are not captured, sufficient history is not available, or sufficient granularity is not available. 
While some techniques may help in the short run, the data capture and sufficiency need to be addressed 
for an effective long-term solution. This directly leads to the need for a system for capturing these data 
points to set up the ecosystem for effective future modelling. The solution to this point lies in the correct 
deployment of IIoT solutions, whether by producing equipment equipped with them since its design or by 
adequately retrofitting legacy equipment. 

Once sufficient data has been captured, the next step lies in the techniques deployed to early detect and 
predict anomalies on production machines.  Thanks to the predictive capabilities offered by the emerging 
smart data analytics, data-driven approaches for condition monitoring are becoming widely used for the 
early detection of irregularities on production machines. With proper adjustments, these approaches are 
even capable of handling situations where the data is even more than expected. Big Data analysts need 
to quickly sift through a voluminous amount of data to identify the information nuggets. Nowhere are the 
data quality ramifications more evident than in predictive modelling.  

It is not always possible to acquire data from physical equipment in the field under typical fault conditions 
(MathWorks 2021). Permitting faults to occur in the field may lead to catastrophic failure and result in 
destroyed equipment. Generating faults intentionally under more controlled circumstances may be time-
consuming, costly, or even unfeasible. A solution to this challenge is to create a digital twin of the 
equipment and generate sensor data for various fault conditions through simulation. This approach 
enables engineers to generate all sensor data needed for a PdM workflow, including tests with all possible 
fault combinations and faults of varying severity. 

Proactive computing leads to very interesting capabilities for enterprises adopting the related 
technologies: the capability to reveal insights and extract previously hidden meaningful patterns from 
structured and unstructured data belonging to a multitude of sources like sensors and actuators, as well 
as the capability to develop predictions and implement respective actions, e.g. to recognize possible 
opportunities or threats before these happen and trigger appropriate actions. In the maintenance context, 
proactive computing is a key enabler since it allows the detection of equipment abnormal behaviours, the 
prediction of future failure modes and the decision about optimal actions that eliminate or mitigate the 
impact of future failures. 

Once machine faults have been predicted by advanced data analysis techniques, maintenance efforts can 
be enhanced through the use of Augmented and Virtual Reality. Relevant data with regards to the health 
and performance of the machines can be transferred without location boundaries, enabling remotely 
supported maintenance without any degradation in the quality and effectiveness of the maintenance 
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activities. Furthermore, such tools can support machine operators to easily understand and diagnose 
problems, and thus increase the safety of the maintenance tasks. 

Linked Data in the frame of PdM means (mainly but not exclusively) linking and correlating different 
internal available heterogeneous data sources. Improved sensor technology and wider application of 
sensors today provide more and more structured numeric data from all kinds of machines in production 
processes. In addition, considerable information and knowledge are available from internal as well as 
external sources. Thus, an efficient aggregation, extraction and visualisation of the relevant information 
are key technologies for information sharing and analysis of anomalies and issue root causes. 

The deployment of PdM on a production line is not a straightforward process. Instead, it encompasses a 
wide set of activities, each of which requires vastly different skills. Such skills cannot be managed by a 
single person. On the contrary, this involvement is often spread over the components of a dedicated PdM 
department or, usually, more than one. Albeit the number of companies that started adopting PdM is 
steadily growing, only a minority of the EU manufacturing companies have personnel skilled in its features. 
For this reason, the skilling of personnel in the various facets of PdM is a key enabler to be addressed.   

 

3.1 IIoT (Sensors, gateways, platform)1 

The Industrial Internet of Things can connect everything from individual sensors and machines to whole 
factories and even networks of factories. Leveraging new technologies like the IIoT can transform every 
aspect of manufacturing, from maintenance to design. Implementing IIoT capabilities is difficult even in a 
clean sheet operation but dealing with legacy equipment can magnify the challenge. 

A “retrofit” or “wrap-and-extend” solution involves using third-party options to extend the capabilities of 
legacy equipment. These include IoT platforms, IoT gateways and sensors that measure KPIs and make 
that data accessible to the IIoT. Most shops won’t find themselves considering all of these options at one 
time: some equipment may have a sufficient number of sensors but lack an ethernet-compatible control 
and a platform to handle all the new data. In other cases, instrumenting legacy equipment can just mean 
adding sensors to connect it to a PLC. 

Whatever the case, retrofitting a machine enables the legacy protocols it uses—e.g., PLCs, control 
applications and embedded sensors—to communicate with modern IoT assets. Turnkey systems that 
provide out-of-the-box IoT connectivity can be installed with minimal to no interruption to uptime and 
since they’re built to accommodate a variety of legacy protocols, they can produce results almost 
immediately. 

 

3.1.1 IoT Sensors and Conditioning Systems 

The core element of IIoT systems is the embedded or retrofitted sensor2. A survey conducted by 
engineering.com found that more than half of all production activities are instrumented, if not connected. 
The survey also revealed a wide range of equipment being reported as instrumented, from actuators and 
hydraulics to pumps, conveyors and pneumatics. Instrumentation available "as standard" on production 
equipment is devoted to monitoring the functions that are the core of legacy equipment operation: 

 
 
2 Extract from "Research Report: The Argument for Robust Predictive Maintenance Systems for Legacy Equipment" 
on engineering.com https://www.engineering.com/AdvancedManufacturing/ArticleID/17987/Predictive-
Maintenance-Breathes-New-Life-into-Legacy-Equipment.aspx . 

https://www.engineering.com/AdvancedManufacturing/ArticleID/17987/Predictive-Maintenance-Breathes-New-Life-into-Legacy-Equipment.aspx
https://www.engineering.com/AdvancedManufacturing/ArticleID/17987/Predictive-Maintenance-Breathes-New-Life-into-Legacy-Equipment.aspx
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position, proximity, pressure, velocity and other fundamental parameters. These are variables that most 
PLCs and central control systems can already process, and most manufacturing engineering professionals 
understand, so adding the capability for reliability and maintenance monitoring may be a simple as adding 
channels to an existing data system and using software to analyse performance data. 

However, when using PdM on legacy equipment, integrating new "dedicated" sensors is usually required. 
While production machinery has featured sensor monitoring for decades, hard-wired sensors feeding 
analogue signals to PLCs are limited in both the quality and usefulness of the data gathered. A common 
misconception is that in retrofit applications on legacy equipment, the sensor suite must be hard-wired 
and run through the machine’s original PLC. While this is an option, wireless devices offer much more 
flexibility at a low cost. Wireless has definite cost and speed advantages in legacy applications and today’s 
systems work in RF environments that would have challenged even wired LAN systems a decade ago. 
Legacy equipment isn’t limited to legacy sensor technology. 

Although some sensors can be installed as essentially turnkey solutions, enterprising manufacturers who 
build custom solutions may require an intermediary between them and the rest of the IoT network. 
Modern dedicated sensors often have signal conditioning and A/D conversion built-in but retrofit 
solutions like thermocouples or strain gauges will require at least signal amplification and an A/D 
converter to transform their low current millivolt output signals to 4-20 mA analogue outputs or digital 
Fieldbus signals. The electronics are off-the-shelf, but integration in-house is not necessarily a lower-cost 
option compared to turnkey systems. 

 

3.1.2 IoT Gateways 

Connecting control, sensors and servers to the Internet is the logical extension of a fully instrumented 
factory1. It’s at this crucial point, between the Edge and the Cloud, where IoT gateways come in. An IoT 
gateway aggregates sensor data and translates it between sensor protocols before sending it to the Cloud. 
Some existing equipment can be tied into a network very simply using devices that act as an IoT gateway. 
Even for older machines that can only be accessed with 24V signals or serial lines, some gateways can 
convert those into more modern protocols, such as MQTT. With so many different sensors and sensor 
protocols, an IoT gateway is essential for any PdM program, including those for legacy equipment. While 
there are numerous options available it’s worth noting that some IoT gateways incorporate onboard 
processing which can filter routine information and only pass on alerts that are worth noticing. 

A versatile IoT Gateway  should perform the following functions (Open Automation Software, 2021): 

• Communication with legacy devices. 

• Provide local data caching, buffering, streaming, pre-processing, cleansing, filtering, aggregation, 
visualization and optimization 

• Short term data historian features 

• Edge analytics and system diagnostics 

• Support machine to machine communication 

• Security – manage user access and network security features 

• Device configuration management 

In edge computing, critical data processing occurs at the data source rather than in a centralized cloud-
based location. A versatile IoT Gateway is the essential link in delivering edge computing power to 
technicians in the field or at the plant floor. IoT Gateways that come equipped with these capabilities are 
referred to as ’Smart’ Gateways. An important thing to keep in mind is the importance of bandwidth and 
wireless connectivity when it comes to using the IIoT. Even a piece of legacy equipment is capable of 
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generating huge amounts of data when retrofitted, which may entail higher bandwidth costs. Edge-based 
processing, which moves analytics down from the cloud into the sensors themselves or to a gateway 
device, can mitigate this issue. For example, a motor or actuator may be configured with sensors that 
generate a continuous data stream but if the critical maintenance-related issues are only a function of 
out-of-limit operation, clipping the data set to transients-only or eliminating data reporting under no-load 
conditions can save bandwidth and simplify the condition monitoring algorithm. 

 

3.1.3 IoT Platforms 

An IoT platform is like an operating system (OS) for the IoT which connects all the sensors, equipment and 
infrastructure necessary for a variety of purposes, including analysis, continuous improvement and, of 
course, PdM  (MathWorks 2021). While an IoT platform is required, few manufacturing companies even 
think of developing one from scratch and instead relies on the many ones available on the market. The 
downside is of course the cost of the IoT platform itself, but at least there is no need for dedicated 
hardware.  

With an IoT platform, analytics can be run at the level of individual machines, manufacturing cells, 
factories, or using a Cloud solution for entire networks of factories. Some IoT platforms are offered as 
Platform-as-a-service (PaaS) which opens up additional options in terms of scalability and product 
support. There are trade-offs in terms of pricing at larger scales and reduced control. It’s also worth 
considering the value of IoT Platforms with open Application Programming Interfaces (APIs) and 
development tools that allow users to integrate their technology into the platform. 

The market for PdM solutions is extremely fragmented and competitive. While many companies highlight 
their algorithmic capabilities as key differentiators, there is limited differentiation in technology and a lack 
of adoption by customers. Furthermore, it is currently unclear if any technology differentiator will truly 
emerge to provide companies with enduring advantages. 

Vendors of technology solutions and platforms, in general, fall into one of two groups: 1) maintenance 
service provides and equipment manufacturers and 2) software companies. These are described in the 
following. 

The first group on the market, maintenance service providers and equipment manufacturers, are not 
originally computing or software actors. They often rely on cloud computing platforms such as IBM 
Maximo, Microsoft Azure or Amazon Web Services for the capacity to offer PdM solutions. They have 
developed a custom, industry-oriented application layers and have the competitive advantage that their 
solutions are based on their knowledge and expertise of the industrial environment. Against the 
background of this expertise, they claim to be the best positioned to deploy adapted and integrated PdM 
strategies. To accelerate the deployment of new technologies in their processes, maintenance service 
providers have set up partnerships with technological partners. For example, Vinci Energies, through its 
Actemium brand dedicated to industrials, has partnered with the software editor Augmensys to develop 
industrial augmented reality solutions. 

The second group offering solutions are software vendors, who are currently aggressively pursuing this 
new market segment. For example, IBM, Microsoft, and SAP have all developed PdM offers based on their 
expertise in Big Data, IoT and machine learning. Besides these digital giants, start-ups are also entering 
the market. Both groups threaten to disrupt the competitive environment of PdM by capturing a growing 
share of the value. The strategy adopted by most software vendors is to provide modular toolkits for the 
development of applications. Both on-site applications and cloud solutions are on offer. Software vendors 
also provide a large range of modules on application marketplaces, allowing them to tailor their solutions 
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to customers’ expectations. Thus, they can customize applications that meet companies’ needs, including 
user interfaces or application layers above their infrastructure. Their solutions may be more suited for 
large firms for custom-made applications and large deployments. 

 

3.1.4 Data-driven analytics for predictive maintenance 

Predictive maintenance is enabled by Predictive Analytics: this approach can be seen as black-box models 
that learn systems behaviour directly from collected condition monitoring (CM) data (e.g., vibration, 
acoustic signal, force, pressure, temperature, current, voltage, etc.). It relies on the assumption that the 
statistical characteristics of system data remain relatively unchanged unless a malfunctioning occurs. Such 
a method transforms raw monitoring data into relevant information and behavioural models (including 
the degradation) of the system. A PdM strategy is mainly composed of two complementary phases. The 
first step is related to the assessment of the current health state (i.e., severity) of a system, which can also 
be considered under data-driven diagnostics. The second phase aims at predicting (or forecasting, (also 
known as data-driven prognostics) degradation trends to estimate the RUL (remaining useful life) of an 
asset, where time series techniques can be applied. 

Pattern recognition techniques such as Machine Learning (ML), can be applied to address the above 
phases. ML is a method of data analysis that automates analytical model building. It is a branch of Artificial 
Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with 
minimal human intervention. Machine learning algorithms build a mathematical model based on sample 
data, known as "training data", to make predictions or decisions without being explicitly programmed to 
perform the task. Here below is reported a chart that shows the different groupings of Machine Learning 
techniques. 

 

Figure 5: Types of Machine Learning 

Basically, for data-driven diagnostics, the supervised classification and/or unsupervised clustering 
techniques are used, while for data-driven prognostics time-series prediction based on supervised 
regression and/or unsupervised episode rule mining are used. Here below a summary description of ML 
techniques (represented in Figure 5) is reported. 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Training_data
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Supervised Learning: supervised machine learning algorithms are those algorithms that need external 
assistance. The input dataset is divided into train and test datasets. The training dataset has an output 
variable that needs to be predicted or classified. All algorithms learn some kind of patterns from the 
training dataset and apply them to the test dataset for prediction or classification (Zhu and Goldberg, 
2009). Regression and Classification are categorized under the same umbrella of supervised machine 
learning. Both share the same concept of utilizing known datasets (referred to as training datasets) to 
make predictions. 

Regression in machine learning: in machine learning, regression algorithms attempt to estimate the 
mapping function (f) from the input variables (x) to numerical or continuous output variables (y). In this 
case, y is a real value, which can be an integer or a floating-point value. Therefore, regression prediction 
problems are usually quantities or sizes. Examples of the common regression algorithms include 
Polynomial regression, Auto-Regressive Integral Moving Average (ARIMA), Support Vector Regression 
(SVR), Artificial Neural Network (ANN) and regression trees. Regression methods need that Failure 
Thresholds (FT) to be defined: the FT (assumed or precisely set by an expert) does not necessarily indicate 
complete failure of the equipment, but a faulty state beyond which there is a risk of functionality loss 
(e.g., loss of Quality). RUL or other associated KPIs can be defined by the formula RUL = tF – tC, denoting tF 
as a random variable of the time when the next failure occurs, and tC as the current time (Figure 6). 

 

Figure 6: RUL estimation with uncertainties 

In this case, the predictions are affected, other than errors associated with the prognostics model, also by 
errors due to inherent uncertainties of FT. 

Classification in machine learning: classification algorithms attempt to estimate the mapping function (f) 
from the input variables (x) to discrete or categorical output variables (y). In this case, y is a category that 
the mapping function predicts. If provided with a single or several input variables, a classification model 
will attempt to predict the value of a single or several conclusions. Examples of the common classification 
algorithms include K–NN (Nearest Neighbours), Logistic Regression (LR), Naïve Bayes, decision trees, 
Support Vector Machine (SVM), ANN and Multi-Instance (learning (MIL). 

Unsupervised Learning: the unsupervised learning algorithms learn few features from the data. When 
new data is introduced, it uses the previously learned features to recognize the class of the data. It is 
mainly used for clustering and feature reduction. Unsupervised learning includes Clustering, Association 
rule mining and Episode rule mining techniques that are described here below. 

Clustering: clustering can be considered the most important unsupervised learning problem; it deals with 
finding a structure in a collection of ‘unlabelled’ data. A loose definition of clustering could be “the process 
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of organizing objects into groups whose members are similar in some way”.  A cluster is therefore a 
collection of objects which are “similar” between them and are “dissimilar” to the objects belonging to 
other clusters. The clustering approach is similar to classification, but the key difference is that it works 
on an unlabelled training data set. 

For instance, when provided with a dataset about sensor signals of a machine/equipment, a classification 
algorithm can try to predict the health state of a machine (e.g., normal vs anomaly starting, warning, vs 
incipient failure), Figure 7.  

 

Figure 7: Classification in states of process signals 

Examples of the common clustering algorithms include K-Means, Fuzzy C-Means, K-Medoids, Density-
Based Scan Clustering (DBSCAN), Autoencoder Artificial Neural Network and Self-Organising Perceptron 
(SOP) network.  

Association rule mining: association rules mining is another key unsupervised data mining method, after 
clustering, that finds interesting associations (relationships, dependencies) in large sets of data items. 
Association rule algorithms count the frequency of complimentary occurrences, or associations, across a 
large collection of items or actions. The goal is to find associations that take place together far more often 
than you would find in a random sampling of possibilities. An association rule has two parts: an antecedent 
(if) and a consequent (then). An antecedent is an item found within the data. A consequent is an item 
found in combination with the antecedent. 

Association rules are calculated from item sets, which are made up of two or more items. If rules are built 
from analysing all the possible items, there could be so many rules that the rules hold little meaning. With 
that, association rules are typically created from rules well-represented in data. Some application areas 
of association rules are market-basket data analysis, cross-marketing, loss-leader analysis, data pre-
processing, genomics, etc. 

In contrast with episode rule mining (see below), association rule learning typically does not consider the 
order of items either within a transaction or across transactions. 

Popular algorithms that use association rules include Apriori, AIS, SETM and variations of the latter. 

Episode rules mining: association rule mining has been developed for transaction data problems. 
However, when working with temporal long sequences, the term episode rule mining is mostly employed. 
The difference between Episode Rules and Association Rules is that the former takes timestamps of events 
into account and the order does not have to be important (in case of parallel episodes). Association rule 
mining algorithms, in general, although effective in mining frequent rules, are vulnerable to the rule 
explosion problem. 

Many data mining and machine learning techniques are adapted towards the analysis of unordered 
collections of data such as transactional databases. However, numerous important applications require 

https://en.wikipedia.org/wiki/Sequence_mining
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the analysed data to be ordered with respect to time, such as data from telecommunication networks, 
anomalies detection, etc. These datasets are composed of large temporal sequences of events, where 
each event is described by date of occurrence and an event type.  

An episode is a temporal pattern made up of “relatively close” partially ordered items (or events), which 
often appears throughout the sequence or in a part of it. When the order of items in total, the episode is 
said to be serial. Similar to the extraction of association rules from item sets, episode rules can be 
extracted from episodes to predict events. 

The main aim behind analysing such sequences is to find episode rules. Informally, an episode rule is a 
causal relationship reflecting how often a particular group of event types tends to appear close to another 
group. Once these relationships are found, they can be used to perform an online analysis to better 
explain the problems that cause a particular event or to predict future events.  

Popular algorithms that use association rules include Minepi, Winepi and variations of the latter. 

The approach weighted WINEPI (Sammouri, 2014) has the aim to direct the mining focus to significant 
episode rules which consider infrequent events, such as failures/anomalies predictions. 

Semi-Supervised Learning:  semi-supervised learning algorithms is a technique that combines the power 
of both supervised and unsupervised learning. It can be fruit-full in those areas of machine learning and 
data mining where the unlabelled data is already present and getting the labelled data is a tedious process 
(Zhu and Goldberg, 2009). There are many categories of semi-supervised learning (Zhu, 2005), the most 
important ones include Generative Models, Self-training and Transductive Support Vector Machine 
(TSVM).   

Deep Learning: Deep Learning is part of a broader family of Machine Learning methods based on artificial 
neural networks with representation learning. Learning can be supervised, semi-supervised or 
unsupervised. 

The difference between conventional neural networks and Deep Learning lies in the depth of the model 
(usually Deep Learning includes more than one hidden neurons’ layer). Deep Learning is a phrase used for 
complex neural networks (Khan et al., 2018). The complexity is attributed to elaborate patterns of how 
information can flow throughout the model. In the figure below an example of a deep neural network is 
presented. The architecture has become more complex, but the concept of Deep Learning is still the same: 
there’s now an increased number of hidden layers and neurons that integrate to estimate the output.  

Deep Learning can be then defined as neural networks with a large number of parameters and layers in 
one of three fundamental network architectures: 

• Convolutional Neural Networks 

• Recurrent Neural Networks 

• Recursive Neural Networks 

A Convolutional Neural Network (CNN) is a standard neural network that has been extended across space 
using shared weights. CNN is designed to recognize images by having convolutions inside, which see the 
edges of an object recognized on the image. A Recurrent Neural Network (RNN) is a standard neural 
network that has been extended across time by having edges that feed into the next time step instead of 
into the next layer in the same time step. RNN is designed to recognize sequences, for example, a speech 
signal or a text. It has cycles inside that implies the presence of short memory in the net. A Recursive 
Neural Network is more like a hierarchical network where there is no time aspect to the input sequence, 
but the input has to be processed hierarchically in a tree fashion.  

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Representation_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
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Reinforcement Learning: reinforcement learning is a type of learning which makes decisions based on 
which actions to take such that the outcome is more positive. The learner has no knowledge of which 
actions to take until it’s been given a situation. The action which is taken by the learner may affect 
situations and their actions in the future. Reinforcement learning solely depends on two criteria: trial and 
error search and delayed outcome (Sutton, 1992).  

 

3.2 Digital Twins 

The first documented mention of the term Digital Twin (DT) was made by Grieves in 2003 during a course 
on Product Lifecycle Management (PLM) (CoBuilder, 2018) to describe the representation of a physical 
object as a CAD model (Grieves and Vickers, 2016). The concept has since evolved and today stands for 
an actionable simulation that not only comprises an object’s geometry but also includes its behaviour 
(Grieves and Vickers, 2016). The first applications of DTs are found in the aerospace sector (Rosen et al., 
2015). Here, DTs are used to integrate the models of different sub-systems of space vehicles and their 
environment by integrating stochastics, sensor data and historical data (Glaessgen and Stargel, 2012). One 
of the maintenance-related aims of this application was to estimate the remaining useful life of the vehicle 
(Glaessgen and Stargel, 2012; Reifsnider and Majumdar, 2013). DTs have since been adopted by the 
manufacturing sector, especially in the context of Smart Manufacturing (Lee et al., 2013; Lu et al., 2020; 
Aivaliotis et al., 2019). Although consensus definition of and reference architecture for Digital Twins is still 
lacking (Lu et al., 2020; Kritzinger et al. 2018), most authors agree that a Digital Twin at least comprises of 
1) the (real-time) reflection of a physical counterpart’s state, 2) the representation of the physical 
counterpart’s design and configuration and 3) the ability to reflect and predict the physical counterpart’s 
behaviour. 

DTs include integrated “ultra-realistic, high-fidelity” (Glaessgen and Stargel, 2012; Shaſto et al., 2012) 
models describing their physical counterpart’s behaviour (Rosen et al., 2015; Glaessgen and Stargel, 2012; 
Reifsnider and Majumdar, 2013; Lee et al., 2013). Besides multi-physics (Arkouli et al. 2020) and numerical 
modelling (e.g. 3D modelling) (Aivaliotis et al., 2021) and simulators (e.g. finite element methods) (Makris 
2021; Aivaliotis et al., 2018), data-driven analytics is also relevant in this context (Tao et al., 2019). 

DTs have already been successfully shown to support (predictive) maintenance scenarios (Glaessgen and 
Stargel, 2012; Hocchalter et al., 2014; Cimino et al., 2019; Zheng and Sivabalan, 2020; Liu et al., 2018; 
Aivaliotis et al., 2017; Aivaliotis et al., 2019). Since there is currently no widely accepted definition or 
reference architecture, most of these DT applications are use case or asset-specific and difficult to transfer 
to other areas. Nevertheless, DT is highly relevant here since their characteristics - representing a system’s 
design, monitoring its state, and anticipating its behaviour – are all required by PdM systems. The further 
development of the concept can thus be expected to impact strongly on the field of PdM in the coming 
years. 

Cyber-Physical Systems (CPS) and DTs are interrelated and partly complementary concepts: both consist 
of a physical component and a digital representation. Whilst CPS focus strongly on processing sensor and 
actuator data and the control loop between the virtual and physical worlds, Digital Twins focus more 
strongly on high-resolution data models, simulation, and the system’s behaviour. A convergence between 
the two concepts can be expected, with first efforts being made to integrate Digital Twins into the RAMI 
4.0 architecture as the Asset Administration Shell (Anderl et al., 2018; Tantik and Anderl, 2017) and 
defining DTs as the “cyber” layer of the CPS architecture (Josifovska et al., 2019; Alam and El Saddik, 2017; 
Lee et al., 2015). 
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Digital Twins can soon be expected to fully integrate PdM functionality for their physical counterparts. 
They will become one-stop shops for all maintenance-relevant information about assets and production 
lines. Digital Twins will be able to show the past, present and predicted future behaviour and condition of 
assets and production lines, implemented via the Digital Twins’ system state and system behaviour 
components. The use of behavioural models and charts in operation and maintenance could reduce the 
amount of needed data, thus making data analytics more efficient, less costly and more useful to 
progressively improve the quality of the models and thus increase the collective knowledge of the actors 
(Chinesta et al., 2020). Digital Twins promise integrated high-fidelity, multi-physics simulation capabilities 
which go beyond those commonly used in PdM platforms today. This will make better analyses and 
predictions possible, increasing the accuracy of PdM based on Digital Twins. Moreover, networked Digital 
Twins could take autonomous action, for example, to reconfigure production lines taking current and 
predicted failures or RUL estimations into account, integrating PdM functionality more fully into the 
control of manufacturing and business operations.  

With enough standardisation and commercialisation efforts, Digital Twins of production assets and lines 
will be sold as integral components of their physical counterpoints as a matter of fact, including modular, 
plug-and-play PdM capability off-the-shelf. However, many steps still need to be taken to reach this goal. 
With regards to standardisation, Digital Twins development today suffers from a lack of consistent 
reference models and integration with existing standards and reference architectures. The Digital Twin 
concept, along with the corresponding definitions, reference architectures, tools and systems is still 
evolving rapidly. Whilst efforts are being made to establish Digital Twins as a component of Industrie 4.0 
and more specifically CPS, a full integration e.g. with RAMI 4.0 has not yet been achieved. Developments 
towards the establishment of Digital Twins as the Asset Administration Shell in RAMI 4.0 are, however, 
progressing quickly (an IEC standard regarding the concept of Asset Administration Shell is under 
development3). If this is successful, it can be expected to accelerate the availability of comprehensive 
Digital Twins including PdM capabilities. Nevertheless, successful PdM applications are often asset or use-
case specific, which means that a “built-in” PdM approach might fail if it is not designed to be flexibly 
adapted and configured for specific asset deployments and production systems. 

 

3.3 Proactive computing 

Proactive computing has been defined by Tennenhouse (2000) as an evolution away from interactive 
computing, i.e., from classical human-centered workstation settings to human-(un)supervised pervasive 
computing scenarios. Tennnehouse’s two main principles were: getting humans above the loop (instead 
of in the loop) of computing and responding to human stimuli faster than human abilities. Proactivity 
refers to the ability to avoid or eliminate the impact of undesired future events, or to exploit future 
opportunities, by applying predictive models combined with real-time sensor data and automated 
decision-making technologies (Engel et al., 2012). Consequently, proactivity in terms of information 
systems is driven by predictions, leading to increased situational awareness and decision-making 
capabilities ahead of time.  

Proactive computing leads to very interesting capabilities for enterprises adopting the related 
technologies: the capability to reveal insights and extract - previously hidden – meaningful patterns from 
structured and unstructured data belonging to a multitude of sources like sensors and actuators 
embedded in objects, customer transactions, social interactions, GPS trails, etc. as well as the capability 

 
3 IEC/WG 24 Asset Administration Shell for Industrial Applications:  
https://www.iec.ch/dyn/www/f?p=103:14:5552662393405::::FSP_ORG_ID,FSP_LANG_ID:25623,25. 

https://www.iec.ch/dyn/www/f?p=103:14:5552662393405::::FSP_ORG_ID,FSP_LANG_ID:25623,25
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to develop predictions and implement respective actions, e.g. to recognize possible opportunities or 
threats before these happen and trigger appropriate actions.  

Organizations and companies are currently experiencing a shift from reactive thinking towards proactive 
thinking, aiming at detecting opportunities and threats affecting their interests ahead of time (Artikis et 
al., 2014). This shift is also comprised of proactive event-driven computing (Sejdovic et al., 2016). 
PricewaterhouseCoopers (or PwC) in 2016 introduced the concept of “proactive organization”, mainly 
focusing on the services offered to customers. According to PwC, a proactive organization aims to identify 
and capture digital signals, to identify the right moment to offer services and to identify the right mode 
of service delivery. Therefore, proactive organisations recognise the critical value of data and are 
continuously looking for new sources of data and ways of gaining meaningful insights from it. This data 
treatment should be subjected to privacy and confidentiality regulations and should be used for better 
decisions. The emergence of the Internet of Things (IoT) paves the way for enhancing the monitoring 
capabilities of enterprises through extensive use of physical and virtual sensors enabling them to decide 
and act ahead of time, i.e., to resolve problems before they appear, in a proactive manner. This requires 
the development of event monitoring and data processing systems that can handle real-time data in 
complex, dynamic environments to get meaningful insights about potential problems. 

Several factors in today’s computing infrastructure open the door for the breakthrough of proactive 
computing: (i) the growing availability of affordable and pervasive sensor technology that in turn generate 
lots of (big) data, (ii) the spreading of broadband connectivity, and (iii) the developments in predictive 
analytics technology. The latter highlights a different angle to this process. Analytics has evolved from 
being merely descriptive (understanding of historical data), to be predictive (providing forecasts of future 
behaviour). The next step is prescriptive analytics, a term that stands for the use of artificial intelligence, 
machine learning and optimization algorithms in a probabilistic context to provide adaptive, automated, 
constrained, time-dependent and optimal decisions. One can view the proactive idea as the event-driven 
variation of prescriptive analytics; reactive computing, coupled with predictive analytics, yields the ability 
to react to events before they occur, which is the essence of proactive event-driven computing. 

A proactive event-driven architecture combines advanced event processing with dynamic forecasting 
capabilities leveraged towards online optimisation and decision-making. The decisions are made in real-
time and require swift and immediate processing of big data, that is, extremely large amounts of noisy 
data flooding in from various locations, as well as historical data. Therefore, achieving the vision of 
proactive computing requires novel research in three different directions:  

Dealing with large quantities of data. Massive volumes of historical data and massive streaming data have 
to be analysed, to forecast events. Most systems are not capable of handling big data in real-time because 
of scalability problems, the need to cleanse noisy data offline, or the difficulty in fusing different types of 
data coming from different sources online.  

Extending the state-of-the-art in event processing to deal with future events and uncertainty due to 
incomplete and noisy streaming data. The ability to process past events and forecast future ones make 
proactive systems a compelling application area. But, the uncertain nature of future events requires a 
major leap in event processing systems. 

Devising methods for making a near-optimal decision within time constraints. The decision about which 
is the best action to take in proactive computing has three main properties that differ from most 
contemporary decision support systems: (1) the decision should be taken under real-time constraints; (2) 
the decision often entails autonomic actions, rather than providing only recommendations for human 
decision-makers; and (3) the decision models adapt and learn from the actual enterprise operation. 
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Although the idea of proactive computing appears simple, it is still an emerging area that has not reached 
maturity in mainstream computing. Proactive applications have been developed in an ad-hoc manner for 
several years; however, the breakthrough that is required to enable pervasive use of proactive computing 
is the development of models and tools to express and execute proactive systems along with successful 
use cases in various application domains. Since manufacturing operations are driven by events, it has 
identified as one of the promising applications of proactive event processing (Engel et al., 2012; Bousdekis 
et al., 2015). With the advancements of Industry 4.0, anticipating potential issues during process 
execution and thereby enabling proactive process management is of utmost importance (Krumeich et al., 
2016; Sejdovic, and Kleiner, 2016).  

In this context, proactive computing is a key enabler of PdM, enabling the detection of equipment 
abnormal behaviours, the prediction of future failure modes and the decision about optimal actions that 
eliminate or mitigate the impact of future failures. The issue of detecting and predicting equipment 
failures was always considered an essential part of asset performance management. The motivation of 
PdM is that the vast majority of equipment failures are preceded by certain signs, conditions, or 
indications that a failure is going to occur. However, the classical industrial view of PdM is mainly focused 
on the use of condition monitoring techniques such as vibration analysis, thermography, acoustic emission 
or tribology on a batch mode, according to the equipment supplier’s specifications.  

In the frame of Industry 4.0, the big data processing technologies in manufacturing environments have 
brought a new perspective. New practices put failure prediction at the backbone of the maintenance 
function, facilitated by the continuous advancements of IoT technology and the availability of a multitude 
of data in manufacturing enterprises. The recent developments lead to a new PdM approach, providing 
powerful capabilities for a physical understanding of the useful life of a system through dynamic pattern 
recognition in various available data sources, Remaining Useful Life (RUL) and failure modes predictions 
as well as proactive decisions. In this direction, proactive computing can take advantage of (deep) machine 
learning, artificial intelligence and optimization algorithms to perform advanced data analytics 
(descriptive, predictive, and prescriptive analytics) in streaming and distributed computational 
environments.  

Indeed, early research proves that proactive computing in PdM can significantly reduce long-term costs, 
extend equipment lifetime, increase in-service efficiency and decrease downtime due to unplanned 
maintenance comparing to breakdown maintenance and to time-based maintenance that is currently 
adopted by the majority of manufacturing firms (Bousdekis et al., 2018; Hribernik et al., 2018). However, 
at the design phase of proactive applications, two main aspects should be taken into account: 

Depending on the manufacturing sector, a combination of maintenance strategies, and thus of computing 
paradigms, may need to be applied to build sustainable solutions. Example factors that affect this balance 
include the criticality of the equipment or the products, the potential consequences in case of equipment 
breakdown or product failure (financial, environmental, human), the timescale of operational cycles, the 
digital maturity of the company. 

Proactive computing introduces a new way of thinking, due to its resulting far-reaching change, that may 
go against engineers’ and operators’ experiences. Proactive thinking does not require simply a robust 
digital culture and change management approaches, but also methodologies for bringing together the 
engineered knowledge of domain experts and the learned knowledge of data analytics. For example, 
answering questions such as “What would you do, if you knew that a failure is about to occur in 
approximately X hours?” is very challenging for experts since it indicates a disruptive way of thinking and 
working. 
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3.4 VR/AR 

Augmented and Virtual Reality (AR/VR) enable the transfer of knowledge without location boundaries. 
Particularly because of scarce personnel resources or travel restrictions such as the current Corona crisis, 
these technologies serve as key enablers for a new type of remote maintenance process. 

The AR/VR functionalities in the manufacturing maintenance field serve the following main goals:  

• enable remotely supported maintenance that could optimize maintenance time and cost without any 
degradation in the quality and effectiveness of the maintenance activities;  

• support machine operators to easily understand and diagnose problems, while at the same time 
engage in the maintenance process with remote support from machine vendors and other 
stakeholders;  

• increase the safety of the maintenance tasks. 

In order to meet these goals, the AR/VR functions should take into consideration the existing maintenance 
practices in each use case and the current best practices and industry standards on visualization and 
augmented reality.  

Some indicative industrial PdM solutions or approaches which use augmented or/and virtual reality 
techniques for human involvement in the maintenance loop are briefly presented below. 

Innovae is one of the companies focusing on the area of PdM using augmented and virtual reality 
technologies. They provide a suite of solutions that cover a wide range of PdM cases (Innovae, n.d.), 
including a solution for a maintenance support system and a solution focusing on remote technical 
support.  Key functionalities of maintenance support solution are the mechanism for asset identification, 
multi-device environment (tablet, smart glass, PC), guided maintenance process to technicians (using 
augmented reality technologies) and a digitized knowledge repository (includes resources task plans and 
statistics). The remote assistant solution also provides a multi-device environment and online guides for 
the maintenance process. Furthermore, it provides video conferencing system functionality enhanced 
with augmented reality to support the remote assistant process. 

Augmensys includes augmented reality techniques in its solution for PdM (Augmensys, n.d.). The key 
functionality that provides to technicians using the AR software is location awareness by recognising the 
absolute position as well as the direction and angle of the targeted point; different views for different 
users and different places; connection of maintenance workflows (from the central data management 
system) and real-time update of these workflows; bi-directional communication with technician and 
central management system; asset recognition through OCR technologies (through barcode or RFIDs or 
common labels).  

Valmet (n.d) proposes an AR solution for PdM that can run on a tablet, smartphone or PC and guides 
technicians to the exact location of a mechanical component in need of a maintenance check (AR 
navigation). Also, Valmet suggests that the AR solution should provide the technician data about the 
maintenance history and access to the online manual for the specific component. 

SAP proposed a suite of applications for connected assets with a new dimension of AR and wearable 
technology in PdM (McMullen, 2019). Initially, the AR application can be used in a portable device (tablet 
or smart glasses) and through an object recognition mechanism can identify specific material. For every 
material, a set of healthy or early failure indicators are displayed. These indicators depending on their 
severity are colored (for example green – yellow – red). Also, a set of instructions (documented or voice-
based) is available. Furthermore, AR application is enhanced with voice-video calls for remote assistant 
and with VR capabilities, so the user can see the 3D shape of the specific material. 
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Furthermore, the use of AR technologies in maintenance has been investigated in various research efforts. 
The Glass@Service project focuses on the use of AR glasses in the production environment and the 
provision of the necessary information (FRAUNHOFER FEP, n.d.). The presentation of product defects for 
quality assurance and repair of electronic flat modules was also considered. As part of the AcRoSS project, 
a service platform of AR software modules was developed so that companies can assemble AR 
applications according to the modular principle (Schiefelbein and Röltgen, 2018). Technical basics 
regarding the connectivity of machines were examined in the SEPIA.PRO project on the application case 
of plant optimization (SePiA Pro, n.d.).  

 

3.5 Linked Data 

Linking data or “Linked Data” is referred to as structured data which is interlinked with other data through 
semantic queries so it becomes more useful. Tim Berners-Lee, director of the World Wide Web 
Consortium (W3C), coined the term in a 2006 design note about the Semantic Web project. Linked Data 
essentially refers to data published on the Web in such a way that it is machine-readable, its meaning is 
explicitly defined, it is linked to other external data sets, and can, in turn, be linked to from external data 
sets (Bizer et al., 2009). The intention was to share and combine data to be able to draw new insights from 
data and open data sources and their combination called Linked Open Data (LOD). Over the years, turning 
the Linked Data vision into reality has given new impetus to embrace more lightweight standards and AI 
and big data technologies.   

Linked Data in the frame of PdM means (mainly but not exclusively) linking and correlating different 
internal available heterogeneous data sources. These data vary from structured to semi-structured and 
unstructured data. Structured data is data that has a pre-defined data model and is therefore 
straightforward to analyse like e.g. data stored in a CSV file. Unstructured data is information that either 
does not have a predefined data model or is not organised in a pre-defined manner. It is typically text-
heavy and can contain data such as dates, numbers and free text e.g. description of the conduction of 
certain maintenance activity. Semi-structured data is a blend of the before mentioned ones in which the 
data does not conform with the formal structure of data models associated with relational databases or 
other forms of data tables (e.g. XML files). 
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Figure 8: Example of a dashboard implementing explorative search over linked data (UPTIME/Maillis Use Case) 

Improved sensor technology and wider application of sensors today provide more and more structured 
numeric data from all kinds of machines in production processes. In addition, considerable information 
and knowledge are available from internal as well as external sources. Typical internal sources are related 
to production planning, logistics and quality management as well as the experience of the maintenance 
experts. Thus, an efficient aggregation, extraction and visualisation of the relevant information are key 
technologies for information sharing and analysis of anomalies and issue root causes. Big data-based 
enterprise applications, like search tools, provide generic aggregation and indexing mechanisms and are 
available on the market, both as commercial tools (e.g. Dassault Exalead CloudView, IBM Vivisimo 
Velocity, Coveo Enterprise Search) and as open-source (e.g. Elasticsearch, Solr). In general, most tools 
target to analyse large volumes of heterogeneous data from high-dynamic distributed sources.  

In parallel, the prevalent data deluge that is associated with maintenance processes can be leveraged to 
create knowledge graphs and semantic data lakes. In this case, big data and graph technologies are put 
into use to analyze and find useful connections hidden amid huge amounts of data. According to Gartner 
(2020), graph analytics and graph machine learning are in fact among the top trends in 2020 with the 
representation of the data in a graph structure to be easily exploited by machine learning models being 
listed among the core challenges. Manufacturers are expected to be asking increasingly complex 
questions across structured, semi-structured and unstructured data, often blending data from multiple 
applications, and increasingly, external data and graph-related technologies will be instrumental in such 
a quest to timely and accurately predict, prepare and respond to potential failures at the right time. 

Different and complementary approaches may be taken to leverage Linked Open Data in the context of a 
predictive maintenance platform. The first approach deals with explorative visual analytics. Here, an 
appropriate Human-Machine Interface visualizes data in a customer-oriented way, allowing users to 
monitor and interact with the data both in real-time, to get insights into developments as they 
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happen,  and asynchronously, for detailed batch data analysis of historical data. Individually customisable 
dashboards are provided to visualise and analyse data in an ad-hoc, intuitive and user-definable way to 
quickly get deeper insights, support the maintenance decision-making process and investigate new 
solutions to maintenance problems. This approach allows typical data analysis tasks, such as complex 
queries or the visualisation of progressions, distributions, and correlations to be conducted even by non-
professionals without a deep knowledge of the individual data sources. The second, complementary 
approach leverages semi-automatic mapping techniques to extract the semantics and the links between 
maintenance-related data considering an appropriate predictive maintenance data model acting as a 
taxonomy. In the direction of the linked data principles for inter-connectedness between the data and 
enabling network effects to add value to data, this approach applies some machine learning models 
combining and providing further insights into the available maintenance data, for example, related to 
maintenance logs and OEE. 

 

3.6 Skilling of personnel 

The deployment of PdM on a production line is a process that encompasses a wide set of activities. Each 
of these requires different skills, all of which cannot be managed by a single person. On the contrary, this 
involvement is often spread over the components of a dedicated PdM department or, usually, more than 
one.  

Broadly speaking three separated steps are required to successfully implement a PdM project into an 
industrial environment: 

• definition of PdM application: includes the selection of the best approach to prediction, the creation 
and maintaining of PdM models, the definition of which data is required at each stage (for modelling, 
training, validation), the actual development and deployment of the PdM solution, the validation of 
the prediction models or algorithms  

• collection of the required data: includes activities like the hardware and SW installation of sensors, 
gateways, and network infrastructure; the inspection, cleaning and formatting of data as well as 
making the data accessible to relevant stakeholders 

• embedding of PdM at all levels of the organisation: this phase is required to scale, operationalise and 
embed new predictions into day-to-day operations. Associated skills range from the actual process of 
deciding if, how and when an equipment component, foreseen for failing, should be maintained to 
the integration of maintenance activities with the current production scheduling, moving through, to 
the portrayal of maintenance-related information to relevant people in the production/management 
structure.   

While some of the skills required to run these steps are generally already available in a factory 
environment that does not exploit a PdM approach (e.g. maintenance scheduling or sensors installation 
and checking), most of them can be considered brand new in the traditional production environment. 
Consequently, the addition of dedicated PdM actors or the skilling of existing ones is required. The 
following table provides a list of the required skills.  
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Skills Objective Actor Available in a 
traditional factory 

Domain/business 
Knowledge  

to formulate the problem 
correctly 

Production manager,  
maintenance expert 

Yes 

Failure mode and 
criticality analysis 

to determine the impact of 
equipment components failure 
on the equipment, personnel, 
facility 

Production manager,  
maintenance expert 

Yes. If not, the 
equipment 
producer might 
provide support  

Analytics tools, 
Statistical and 
Machine Learning 
Techniques, time-
series modelling  

to select, implement and 
validate an appropriate 
methodology to extract insight 
(equipment condition, RUL) 
from the data collected  

Advanced data analyst, 
statistical modeller, 
data miner,  data 
scientist  

No 

Data engineering, 
ETL and data 
warehousing, data 
quality and data 
management 

to collect, clean, properly 
format and make available 
required data to relevant 
stakeholders 

Data analyst No 

Data visualisation to present collected data into a 
meaningful and understandable 
format 

GUI designer and 
developer 

No 

Programming to implement data and 
algorithm workflows/pipelines 

Software expert Yes 

Analytics product 
deployment 

to customize commercial 
solutions to specific PdM 
implementation 

Data analyst No 

Cost evaluation to determine if it is worthwhile 
to apply PdM solutions 

Business analysts Only in bigger plants 

HW installation  

 

To sensorize and maintain 
existing equipment, to install 
gateways 

Maintenance 
Technician, Sensor 
expert 

Yes. If not, the 
equipment 
producer might 
provide support 

HW maintenance to apply maintenance 
procedures 

Maintenance 
Technician 

Yes. If not, the 
equipment 
producer might 
provide support 

Activities 
Scheduling, 
CMMS/ERP 
proficiency  

to integrate foreseen 
maintenance activities in the 
factory production plan 

Plant manager Yes 

Table 1: List of the required skills for Predictive Maintenance 
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Finally, it is worth noting that multi-skilling usually does not sit well with PdM deployment. The PdM skills 
requirements extend far outside the normal boundaries of competencies usually available in traditional 
factories. On the converse, such skills are indeed required mostly during the setup of the PdM solution 
and much less after its validation period. For this reason, SMEs should consider buying a customized PdM 
solution as a service, as opposed to hiring dedicated personnel. This is not true for maintenance operators 
that must be actively trained to manage PdM once it has been deployed. These operators have to be 
aware both of (1) what preventive maintenance to do and (2) how to perform relevant maintenance tasks. 
Only skilled operators, technically knowledgeable, who understand the engineering of the machines they 
maintain, and who are proven competent in doing preventive maintenance tasks, should be permitted to 
maintain relevant machines. 

 

4 Industrial pilots 

4.1 SERENA system and industrial pilots 

4.1.1 Robotics use case 

Motivation: Maintenance operations are currently 
scheduled by the customer based on the preventive 
maintenance indications provided by the COMAU 
manual. The scheduling is contained in a machine 
ledger, currently in an excel file version. To manage 
work orders, customers use ERP software. 
Maintenance operations are planned during 
production stops to avoid downtime, therefore, 
machines are over-maintained. Condition-based 
maintenance can contribute to reduced machine 
breakdowns resulting in a reduction of 
maintenance costs and an increase in equipment 
availability. 

 

Solution: The COMAU demonstrator includes the local deployment of the SERENA platform and its 
subsystems, integrating all services as Docker containers in the local ICT infrastructure of COMAU. To 
better study, the belt tensioning problem, a testbed named RobotBox has been developed replicating the 
key aspects of an industrial robot (Figure 9). The demonstrator consists of the data acquisition process 
performed via a local gateway (4G and 5G compatible), predictive analytics as well as the scheduling of 
maintenance activities and remote operator support to perform the required maintenance activities. In 
particular, data acquisition is delegated to a REST service on NiFi listening on a specified port for POST 
requests. Furthermore, the Predictive Analytics service enables the following key tasks: 

• Model building triggered by either specific user input or an output of the self-assessment service. 
It produces as output the prediction model. 

• Prediction task triggered by a new robot cycle and generating a prediction label along with a RUL 
value. 

• RUL value triggers the scheduling Service for assigning maintenance tasks to site personnel.  

 

Figure 9: Robotic production line 
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• Real-time visualisation of the monitored equipment superimposing key information is facilitated 
via a Unity3D engine platform. 

 

Impact: The benefit for the customer is the improvement, in terms of maintainability, of industrial robots 
exploiting all their components for their entire useful life without over-maintenance activities and with 
reduced breakdowns. This will in turn facilitate reduced maintenance costs and extension of the robot’s 
operational life. The AR solution may speed up remote support for maintenance and the robot will be able 
to return faster to its operation. 

 

Lessons learned: Based on the current deployment and integration status, the micro-service architecture 
gives the possibility to integrate, change or remove a single service with minimal effort. The analytics 
methods employed in the context of the SERENA project seem promising regarding belt tensioning in 
industrial robotics instalments supporting predictions both at the edge and on the cloud. Moreover, the 
adoption of advanced visualisation techniques allows for effective maintenance support. 

 

4.1.2 Steel industry use case 

Motivation: VDL Weweler designs, develops and 
produces trailing arms, among others, for the 
manufacturing of trailers, trucks, buses, and 
cars. The production line of VDL Weweler is fully 
automated including both machinery and 
robots. The focus within the SERENA project was 
to enable and test the developed predictive 
maintenance (PdM) techniques and scheduling 
for the proactive maintenance and parts 
replacement of the rolling milling machine 
(Figure 10). 

 

Solution: The SERENA deployment on this demonstrator includes a virtual gateway running on local 
servers overseeing data acquisition from on-site machinery and their communication to the SERENA 
platform. In the SERENA platform, RUL-based prediction of wear is performed triggering a new 
maintenance task to compensate for the identified wear, including inspection and if necessary, 
replacement of a part. The SERENA system aims to support the maintenance operator and possibly guide 
them on how to perform the inspection and maintenance activities on-site. 

 

Impact: The intended scope of VDL Weweler is to provide to their customers the same products (in terms 
of quality) but at a lower price, since the downtime for maintenance and part replacement at the rolling 
milling machine will be reduced along with the production costs while the products produced between 
consecutive maintenance stops will be increased. 

 

 

Figure 10: Rolling milling machine 
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Lessons learned: The SERENA system is very versatile accommodating many different use cases. 
Prognostics need a deep analysis to model the underlying degradation mechanisms and the phenomena 
that cause them. However, the analysis of production data revealed useful information regarding the 
impact of newly introduced products on the existing production line. 

 

4.1.3 Metrology equipment use case 

Motivation: Metrological equipment is essential for quality control and 
in-line inspection in manufacturing processes. To maintain products as 
competitive as possible, the detection of flaws or maintenance needs 
must be performed in a cost and time-effective approach, keeping the 
cost of the final product as low as possible. Furthermore, the early 
detection of machines’ errors would be essential for the customer of 
TRIMEK and the owner of the measuring equipment, to avoid wrong 
measurements and loss of efficiency and performance. 

 

Solution: The testbed aims to monitor the performance of a coordinate measuring machine (Figure  11) 
to correlate the results of the verification and calibration processes with the values of the operational 
condition. Data acquisition is performed via the SERENA databox, serving as a gateway and providing data 
from the edge to the SERENA cloud platform. Moreover, the RUL calculation is performed on the cloud 
triggering maintenance activities. SERENA AR operator support services are included as well to support 
the operator during the inspection and maintenance activities. Cloud deployment of the SERENA system 
is included in this demonstrator.  

 

Impact: The addition of predictive support as a service with the corresponding business model facilitate 
the reduction of maintenance costs, hardware problems, predictive scheduling of corrective activities, 
and increased customer satisfaction. 

As a result of applying SERENA solutions, machine breakdowns were reduced by 10%, the lifetime of the 
machine was estimated to be extended by 0.5 years, the cost of repairing and maintenance activities was 
reduced by 15% while through SERENA enabled the engagement of the correct maintenance personnel 
to the right customer. 

 

Lessons learned: Tests have demonstrated a reduced number of maintenance visits as well as the time 
required to resolve occurred issues on the metrology machine. Moreover, the SERENA system provided 
the means to easily control air unit status via an accessible visualization display of the main operational 
status information of the machine. 

 

 

Figure 10: Measurement machine 
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4.1.4 White Goods use case 

Motivation: The Whirlpool testbed is focused 
on the foaming process, the core process in 
fabricating refrigerators and one of the most 
complex fabrication processes in the White 
Goods industry. The current maintenance of 
the equipment (Figure 11) is based on a 
preventive structure that is planned at 
regular time intervals. However, the 
predictability of failure is extremely low. The 
costs associated with maintenance fix are 
relatively high compared to other 
breakdowns. Therefore, it is crucial to 
address the maintenance issues to keep up 
the availability of the machine and the 

efficiency of the foaming process. The white goods use case concerns the Foaming Machine and its mixing 
head. The scope of the experimentation is to monitor the condition of the Mixing Head in terms of 1) 
General Health Status; 2) Early Warning. 

 

Solution: The White Goods demonstrator includes a SERENA system deployment on the cloud and a virtual 
gateway in charge of collecting and pushing data to the SERENA cloud platform. The most critical aspect 
is predictive analytics which includes the offline dynamic and evolvable building and training of the 
predictive model along with the periodic prediction task evaluating the real-world data and generating a 
prediction label along with a RUL value. 

 

Impact: Whirlpool aims to reduce the burden on maintenance by ensuring maximum machine availability 
which will, in turn, reduce unnecessary breakdown thereby extending the life of components. SERENA 
contributed to an increase to OEE by 5.5%, a 15% reduction of MTTR, an increase of 100% to the MTBF 
and an estimated reduction of TCM by €8.000. 

 

Lessons learned: The joint work of process experts and data experts identified a promising prediction 
mechanism that could already be used to influence the preventive maintenance plan, helping to reduce 
unexpected breaks and optimize maintenance costs. Furthermore, the integration of components proved 
to be flexible to support both present and future requirements. 

 

 

Figure 11: White goods equipment 
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4.1.5 Elevators production use case 

Motivation: The case concerns the monitoring and 
support of the KONE automatic metal sheet 
punching and bending production line (Figure 12). 
The production line consists mainly of an 
automatic punching machine, buffer and 
automatic bending machine including different 
types of conveyors and turning tables. The 
testbed provides vibration and sound measures 
for the project to develop PdM algorithms and 
models to assess the condition of production 
equipment. In particular, the goal of condition-
based maintenance is to detect bearing faults 
employing envelope analysis. 

 

Solution: The testbed development included the 
installation of data collection devices and 
software, conveyor bearing vibration sensors and punching tool acoustic emission sensor, vibration sensor 
and microphone. Raw data analysis is performed first in the SERENA cloud, and in the second phase, the 
analysis is taken to the edge level to be handled by a Raspberry. The results of these fault indicators are 
delivered to the SERENA cloud and based on this, MIMOSA schema relations are used to create an alert 
and estimation of the severity of the failure. Next, the scheduling service plans for maintenance activity. 
The resulted event is enriched with the required maintenance support information and communicated to 
a maintenance operator at the pre-determined by the scheduler time. 

 

Impact: The SERENA solutions were able to improve preventive maintenance scheduling and maintenance 
resource scheduling including spare parts inventory as well as to decrease down time’s waiting and repair 
time based on AR solution and spare parts inventory strategy. In particular, SERENA solutions contributed 
to an increase of MTBF by 100 minutes and a 10% reduction of maintenance costs. 

 

Lessons learned: In this case edge analytics performed by a low-cost edge device (Raspberry Pi) proved to 
be easy to install and configure while cost-effective. Moreover, the work in the context of the SERENA 
project revealed the magnitude of the missing know-how regarding the performance of predictive 
analytics. 

 

 

Figure 12: Elevators production line 
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4.2 UPTIME system and industrial pilots 

4.2.1 Whirlpool use case: Drum Dryer Production Line 

Motivation: The Whirlpool white goods use 
case deals with an automatic production line, 
which produces drums for clothes dryers 
(Figure 13). The drum production equipment is 
very complex, highly automated and critical 
from many perspectives. Currently, preventive 
and reactive maintenance is implemented and 
although needed, they exhibit many 
drawbacks. The reactive maintenance is 
performed during operation time, causing 
either a stop of the production or a degradation 
of it. The preventive maintenance is performed to reduce unwanted breakdowns as much as possible, 
which can improve the Mean Time Between Failures (MTBF). However, it can be very expensive, impacting 
the Total Cost of Maintenance (TCM). The Whirlpool use case aims to investigate how Whirlpool can make 
an effective transition from preventive maintenance to predictive maintenance. 

 

Solution: The Whirlpool use case starts with the acquisition of historical and operational data and the 
analysis of machine failures and maintenance actions to learn from experience and understand 
maintenance knowledge that relevant data from legacy and operational systems may reveal. The analysis 
is performed by UPTIME_ANALYZE, combined with the failure modes details detected by UPTIME_FMECA. 
Accordingly, new additional equipment sensors have been installed into the Whirlpool drum production 
line, which allows further enrichment of the dataset by UPTIME_SENSE, to continue the evaluation of 
machine learning algorithms by UPTIME ANALYZE, provide forecasts of future events by UPTIME_DETECT 
& _PREDICT and build basic rules for establishing health status of the equipment by UPTIME_DECIDE. 
UPTIME mobile application is available to be used by the factory workers to see generated maintenance 
recommendations and decide on maintenance actions. 

 

Impact: The capability of the UPTIME system to predict future failures of the drum production line and to 
give indications about prognostic measures will modify the preventive maintenance plan allowing 
Whirlpool to anticipate planned intervention on components, thus reduce unexpected breakdowns, delay 
other interventions, and accordingly save money. The MTBF is expected to increase, since some 
unforeseen breakdowns will be predicted by the system, allowing maintenance to act before the 
component breaks. Moreover, the Mean Time to Repair (MTTR) is expected to decrease, due to the 
maintenance activities that will be planned, and thus optimising equipment downtime. All these effects 
will also positively impact the Total Cost of Maintenance thanks to optimized management of spare parts, 
technicians scheduling and improved effectiveness. 

 

Lessons learned: Quantity and quality of data need to be ensured from the beginning of the process. It is 
important to gather more data than needed and to have a high-quality dataset. Machine learning requires 
large sets of data to yield accurate results. Data collection needs however to be designed before the real 
need emerges. Moreover, it is important having a common ground to share information and knowledge 

 

Figure 13: Whirlpool drum Dryer production line 
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between data scientists and process experts since in many cases they still don’t talk the same language 
and it takes significant time and effort from mediators to help them communicate properly. 

 

4.2.2 MAILLIS use case: Cold Rolling Mill 

Motivation: The M.J. MAILLIS steel industry use case 
deals with a cold rolling mill for the production of steel 
strapping (Figure 14). The demand for changing over 
the milling rollers comes either from their regular wear 
or unexpected damage, which can occur due to either 
defective raw material or an equipment malfunction. 
When this occurs, rolls are removed from the stand for 
grinding. This usually happens every eight hours for the 
work rolls and every week for the backup rolls. 
Replacement means production downtime which 
directly impacts costs. The current maintenance is 
performed frequently at predetermined intervals, which is based on generic performance data or previous 
experience. It is of utmost importance for MAILLIS to have their machine or a piece of equipment that can 
tell the machine current health status and the degree to which that status deviates from normal condition 
along with predictions about its future health state and actions recommendations. 

 

Solution: Health monitoring in the context of MAILLIS use case involves inspection of the state of various 
components that constitute the milling station. As the physical conditions inside the milling station are 
extreme, health monitoring cannot be carried out by the traditional methods involving visual inspection 
during operation. Thus, in UPTIME, a set of appropriate and resistant sensors was set up in the sensor 
network that monitors the most important operational variables. The UPTIME platform will then acquire 
and process sensor data (UPTIME_SENSE), to provide information about the current health state of the 
machines (UPTIME_DETECT), predictions about future failures (UPTIME_PREDICT), criticality assessment 
(UPTIME_FMECA), proactive recommendations (UPTIME_DECIDE), and generate new maintenance plan. 
Besides that, an analysis of legacy and Overall Equipment Effectiveness (OEE) data is carried out by 
UPTIME_ANALYZE showing the prediction of operation interruptions from past behaviour. 

 

Impact: It is expected that MAILLIS will have a machine that reports its current health status along with 
the appropriate data analytics. UPTIME system will allow predictions about the equipment‘s future health 
and provide recommendations for future actions. The ability for machines to perform self-assessment on 
which basis maintenance decision making can be optimized will allow MAILLIS to reduce its maintenance 
costs, improve their performance and affect positively the products’ entire life cycle. 

 

Lessons learned: Installation of sensor infrastructure: during the initial design to incorporate the new 
sensors into the existing infrastructure, it is necessary to take into consideration the extreme physical 
conditions present inside the milling station, which require special actions to avoid sensors being damaged 
or falling off. A flexible approach is adopted, which involves the combination of internal and external 
sensors to allow the sensor network prone to less failure. Quantity and quality of data: it is necessary to 
have a big amount of collected data for the training of algorithms. Moreover, the integration of real-time 

 

Figure 14: Maillis cold rolling mill 
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analytics and batch data analytics is expected to provide a better insight into the ways the milling and 
support rollers work and behave under various circumstances. 

 

4.2.3 FFT use case: Transportation Logistics 

Motivation: The FFT transport logistics 
(Figure 15) for the aviation industry use case 
deals with the maintenance of a complex 
large mobile asset, the wing upper cover 
transportation jig. The transportation jig 
consists of a steel structure and a lightweight 
aluminium cover. It is used to transport large 
components of aircraft wings over land, 
water and in the air, thus it is subject to high 
environmental stress. The current maintenance is based on manual physical checks with limited time and 
location windows to perform maintenance. Since it is an important resource of the 
manufacturing/assembly processes, the high availability of the transportation jigs and optimized 
maintenance process are expected. 

 

Solution: The FFT use case starts with the implementation of UPTIME_SENSE to acquire sensor data. As a 
prerequisite for mobile field deployment, mobile sensor nodes to implement a large number of sensors 
are developed and connected to the UPTIME_SENSE.  UPTIME_DETECT takes the sensor data as input and 
detects anomalies, which is passed as event information to the UPTIME_PREDICT, which estimates a 
prediction of a certain failure that is expected to happen based on the input event(s) and a user configured 
set of rules. Besides that, FFT provides some historical datasets from their measurement campaigns and 
some semi-structured data of manual inputs from the maintenance operator, which customized by 
UPTIME_VISUALIZE to facilitate qualitative assessments relevant to the Jig status. UPTIME_DECIDE 
receives predictions about forthcoming failures and generates maintenance recommendations and a new 
maintenance plan. 

 

Impact: Because both production and logistics schedules can be significantly affected by the availability 
and plannability of transportation jig, the benefit of having comprehensive condition information about 
the jig is potentially very high. FFT maintenance service performance can be improved considerably e.g. 
by ensuring the availability of resources (equipment, spare parts, materials etc.). UPTIME is expected to 
enable FFT maintenance service to focus more on the primary maintenance processes by automating 
secondary processes such as data acquisition, processing and reporting, while continuously providing 
relevant data to improve all processes: planning, execution, reporting, evaluation, improvement. 

 

Lessons learned: Quantity and quality of data: the available data in the FFT use case mainly consists of 
legacy data from specific measurement campaigns. The campaigns were mainly targeted to obtain insights 
about the effect of operational loads on the health of the asset, which is therefore quite suitable to 
establish the range and type of physical parameters to be monitored by the UPTIME system. 
UPTIME_SENSE is capable of acquiring data of mobile assets in transit using different modes of transport. 
While this would have been achievable from a technical point of view, the possibility to perform field trials 

 

Figure 15: FFT transportation equipement 
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was limited by the operational requirements of the end-user. Therefore, only one field trial in one 
transport mode (road transport) was performed, which yielded insufficient data to develop useful state 
detection capability. Due to the limited availability of the jig, a laboratory demonstrator was designed to 
enable partially representative testing of UPTIME_SENSE under lab conditions, to allow improvement of 
data quantity and diversity and to establish a causal relationship between acquired data and observed 
failures to make maintenance recommendations. 

 

4.3 ZBRE4K system and industrial pilots 

4.3.1 Philips use case 

Motivation: Shopfloor machinery requires periodic preventive maintenance to operate under the 
predefined industrial protocols and produce the parts within the expected limits. On the other hand, the 
continuous operation of the machines leads to a degradation of their internal tools. The main goal of the 
Z-BRE4K solution is to apply algorithms that will be able to predict the remaining useful lifetime of a certain 
tool between the intervals of scheduled maintenance. The other main motivation of the implementation 
of the Z-BRE4K solution is to simulate the processes over the complete production chain and monitor, 
based on sensorial data, the interaction between the tools and the machines in the assembly line and the 
product family. 

 

 

Figure 16: Cutter flow line of PHILIPS use case 

 

Solution: Z-BRE4K combines all separate data and gathers it to the prediction of the remaining useful 
lifetime component where the component implements algorithms to compute the expected tool life and 
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compare with the results given by the operators, based on their experience. The computed expected tool 
life is more accurate than the previous one and the prediction outcome is sent to the Decision Support 
System component which creates a suggestion for the production managers or the tool workshop 
operators. The suggestions are based on predefined rules by production managers and can create a new 
Maintenance Plan, which will include new maintenance orders for the tool, based on the prediction of the 
expected tool life. 

 

Impact: PdM helps this end-user to improve the uptime of their tools in the live production while reducing 
tooling costs, man-hours and unnecessary tooling parts stock. 

 

Lessons learned: PHILIPS supports the idea of predictive maintenance, “listening to the machines” and 
understands that the key to success is close contact between technology providers and experts where 
data integration/architecture and machine learning are both very important projects. 

 

4.3.2 Gestamp use case 

Motivation: The use case deals with the complex equipment on the shop floor where the industry will act 
upon a sudden breakdown. The aim of the Z-BRE4K solution of this use case is to implement cognitive 
maintenance strategies for full equipment and process production availability while addressing the quality 
control of instruments on the shop floor and measure it with KPIs. 

 

 

Figure 17: Automotive Smart Factory for chassis manufacturing of GESTAMP use case. 

 

Solution: The solution exploits the available information by the integrated systems on the shop floor and 
connects with the shop floor’s MES and quality control system for data retrieval that are being sent to the 
Z-BRE4K Predictive Maintenance Component where the component implements its algorithms to create 
predictions. Also, data is simulated in the Z-BRE4K solution, creating a digital twin for the system which 
will be used to predict and reduce failure rates and downtimes. Finally, the Z-BRE4K solution is 
implemented to optimise the working conditions on the shop floor based on PdM. 
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Impact: Predictions on the shop floor will reduce breakdowns and downtimes of the machines while 
readapting the manufacturing procedures on the shop floor to accommodate the most suitable 
maintenance based on the Z-BRE4K system. 

 

Lessons learned: GESTAMP, besides getting familiar with Z-BRE4K’s solution validation and assessment 
methodology, got a better understanding of internal reflection and readiness to apply predictive 
maintenance solutions to its plants while new mitigation actions related to process flaws and defects 
identification were developed during the Z-BRE4K. Also, they have understood the importance of solution 
validation and assessment methodology defined in  Z-BRE4K. 

 

4.3.3 Sacmi/CDS use case:  

Motivation: New machinery is equipped with a vast range of sensors, thus making the latter generation 
of production equipment and advanced CPSs. However, given the high CAPEX of production equipment, 
the majority of the already deployed machinery in existing shop floors is some years old. This other type 
of machinery is equipped with a limited number of sensors associated with fixed alarms. In this regard, 
these systems lack a pervasive condition monitoring system that can detect deterioration trends leading 
to failures, which some of them cannot be detected with existing alarm configuration and the operation 
strategy executed by the final user. Hence, an end-to-end PdM suite can provide final users with a solution 
for improving efficiency and equipment effectiveness. 

 

 

Figure 18: CCM machine for beverage closure manufacturing and components that are being monitored in Z-BRE4K, source: 
SACMI 
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Solution: Sensor data is gathered by additional sensors and a condition monitoring solution in the system 
and it is distributed in the Predictive Components to create outputs based on dedicated algorithms able 
to determine the remaining useful life and machine failure. 

 

Impact: Z-BRE4K solution will have a positive impact on plant productivity and also component’s 
management, including inventory costs for spare components. 

 

Lessons learned: SACMI-CDS found out the importance of collaboration not only with a mechanical 
engineering/maintenance-related professionals but also with different technical background experts that 
together can improve multi-tasking and combining shopfloor and office-related activities as well as 
scheduling of activities during the work journey. 

In general, after the solution implementation (TRL5), testing the system on the shop floor (TRL6) and 
validation of the Z-BRE4K solution (TRL7) at end users, the very final lesson learnt can be summarised as 
follows: 

• Live data are gathered by sensors and other systems. 

• Data from individual data systems incorporated in a distributed system. 

• Quality and maintenance measurements are available. 

• Manual maintenance schedules are replaced with PdM procedures and schedules. 

• Maintenance experts supported by gathered data and predictions to improve their know-how in the 
maintenance domain. 

• PdM accuracy and performance is established. 

• Productivity improved. 

• Cost reduction obtained. 

• Possibility of Testing a full end-to-end solution for maintenance management including prescriptive 
and predictive analytics. 

 

4.4 PROGRAMS system and industrial pilots 

4.4.1 Milling machine tools use case: Aurrenak pilot line 

Motivation: The Predictive 
Maintenance (PdM) strategy exploits 
data coming from sensorized 
equipment to determine when a 
processing resource is approaching 
the point when it will no longer be fit 
for purpose and, in doing this, allows 
to reduce the cost associated with 
corrective maintenance activities up 
to 50%. However, complex equipment 
like the FIDIA milling machine tools present in the Aurrenak facility is made up of tens to hundreds of 
components that must be monitored (depending on the granularity of equipment decomposition). 

 

Figure 19: Aurrenak workshop 
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PROGRAMS DSS analyzed maintenance data from both FIDIA and Aurrenak DBs to decide, for each 
component of the pilot machine tool, which maintenance strategy should be applied to reduce the overall 
maintenance cost. The Aurrenak workshop where testing and experimentation took place is presented in 
Figure 19. 

 

Solution: PROGRAMS combines data coming from machine tool controller, additional sensors installed on 
it during the project and any available legacy maintenance data to perform an LDA analysis of the 
components, estimate their life distribution, simulate the overall machine tool availability and LCC under 
different applied maintenance strategies and finally provide the computation of the RUL for the 
components for which the PdM was finally selected (spindle, gearboxes, linear guideways). Furthermore, 
the ideal time for performing preventive maintenance is associated with the RUL information and the 
production plan, to create a comprehensive activities schedule.  

 

Impact: PROGRAMS solution reduced the overall cost associated with the maintenance of the machine 
tool by 20%. Furthermore, the machine Life Cycle Cost was lowered by 15%÷20% in the short-medium 
term and by 25%-30% in the long term. 

 

Lessons learned: correct determination of best maintenance strategies and computation of components 
RUL requires the collection of a vast amount of data in a format that must be easily accessible and 
analyzed.  

 

4.4.2 Robot-assisted welding use case: Calpak pilot line 

Motivation: In the robot-assisted solar tanks 
Calpak production environment (Figure 20), 
maintenance has two main goals:  

(1) prevent unexpected breakdowns 
which will lead to the long delay of 
the production in a specific period 
of the year and 

(2) determine the remaining time until 
the welding robots stop granting 
the required quality level of final 
products 

The distinguishing factor is that the time when the second condition is reached is usually shorter than 
when the first is met. Production equipment components may degrade in condition but keep on working. 
Nonetheless, the overall quality of their usage will violate quality thresholds. 

 

Solution: Since all the major moving components of the robot concur with the quality of the welding, a 
PdM strategy has been deployed for each of them by modelling a digital twin for the whole robot. 
Furthermore, a dedicated vision system has been deployed to monitor the quality of the welding. By 
proper combining predicted maintenance tasks with the estimated production plans (which are denser 

 

Figure 20: Calpak workshop 
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during summer), the PROGRAMS solution reduce the possibility of incurring unacceptable quality 
degradation during the whole year. 

 

Impact: PROGRAMS solution reduced the overall number of unexpected maintenances stops and the 
length of maintenance activities during summer while still minimizing the overall maintenance costs. The 
OEE was brought to 95% thanks to the higher Availability (increasing of MTBF and reduction of Mean 
Down Time) 

 

Lessons learned: robot components show a slow degradation of their performances: data collection must 
begin as soon as possible. 

 

4.5 PRECOM system and industrial pilots 

The PreCoM project uses the same PdM approach for all three use cases as described below. This 
approach will provide results on the feasibility and impact of applying the PreCoM concept and system in 
different real industrial scenarios. 

4.5.1 Low volume manufacturing: Sakana Production Line 

Motivation: SAKANA S. Coop, Spain, is a company that produces cast grey and ductile iron parts. With a 
total capacity of production of around 30,000 tons per year, Sakana is specialized in the production of 
very heavy-section parts (20-30 tons) and it is divided into two divisions:  

• Wind turbine industry.  

• High technology castings (HTC). 

The main reason to select this industry is that it is a 
low volume production industry, where the 
manufactured products are of high added value. 
Moreover, the condition of the machine tool could 
meaningfully affect both the quality of the 
machined workpiece and the productivity of the 
machine derided from the unexpected stoppages 
due to the failure of critical components of the 
machine. A milling machine at Sakana is presented 
in Figure 21. 

 

 

Figure 21: Soraluce’s milling machine at Sakana 
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4.5.2 High volume manufacturing: Spinea Production Line 

Motivation: SPINEA is a modern Slovak 
engineering company, engaged in the 
development, manufacturing and sales 
of high-precision reduction gears, which 
are sold under the trademark TwinSpin 
(Figure 22). TwinSpin high precision 
reduction gears are serially 
manufactured. High precision reduction 
gear TwinSpin belongs to a category of 
Hi-tech products and represents a 
unique technical solution integrating radial-axial bearings with high precision reduction gear into one 
compact unit. 

SPINEA is a high-volume manufacturer and constitutes a different industrial case where it is crucial to 
avoid stops in the production line and assure product quality. Condition monitoring is a fundamental 
objective for avoiding losses of money, imperfect products and raw materials due to stoppages and 
production problems. 

 

4.5.3 Continuous manufacturing: Goma Camps Production Line 

Motivation: Gomà-Camps 
Group manufactures 
processes and trades tissue 
paper (Figure 23) and other 
similar products. It has 2 
machines for the 
production of 100% virgin 
cellulose tissue and 
recycled tissue, with a total 
capacity of 60,000 Mt/per 
year. Goma Camps is an example of continuous manufacturing, where unnecessary stoppages and 
breakdowns are highly problematic. 

 

Solution: The Predictive Cognitive Maintenance Decision Support System (PreCoM) enables its users to 
detect damages, estimate damage severity, predict damage development, follow up, optimize 
maintenance (for reducing unnecessary stoppages) and get recommendations (on what, why, where, how 
and when to perform maintenance). PreCoM is a cloud-based smart PdM system using vibration as a 
condition monitoring parameter. Some accelerometers for measuring vibration (of both rotating and non-
rotating components), as well as other sensors (i.e. for temperature), have been installed in machines’ 
significant components (i.e. components whose failures either expensive or dangerous). Over 20 
hardware and software modules (common to all considered and equivalent use cases) are integrated into 
a single automatic and digitised system that gathers, stores, processes and securely sends data, providing 
recommendations necessary for planning and optimizing maintenance and manufacturing schedules. The 
PreCoM system includes loops and sub-systems for data acquisition, data/sensor quality control, 

 

Figure 22: Overbeck’s grinding machine (left) and Lamb’s machining 
centre (right) at Spinea 

 

Figure 23: Lantier’s paper mill at Goma Camps 
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predictive algorithm, scheduling algorithm, follow up tool, self-healing ability for specific problems, and 
end-user information interface (with the Production Line Information Visualisation, see Figure 24). 

 

 

Figure 24: An example of PLIV (dashboard) for Goma-Camps, showing the top hierarchy factory level. a) Provides a 
comprehensive but detailed overview of the maintenance status of the entire factory. b) Shows the notifications that are 

popping up immediately after. 

 

Impact: PreCoM impact is introduced below as an average of the impact achieved in the three uses cases: 
Sakana, Spinea and Goma Campus, based on the components monitored by PreCoM: 

• Reduced downtime by about: 88% 

• Maintainability (MTTR) improved by about: 24% 

• Reduced supervision time in the training for new technicians by about: 76% 

• Increased machine overall equipment effectiveness (OEE) by about: 5% 

• Applying PdM by company personnel has been increased. From previous level 0 to about 80% 

• Energy is rationalized by reduction equivalent to about: 16% 

• Material loss is reduced by about: 16% 

• Application of PreCoM versus work safety:  No accidents previously as well as during PreCoM 

• Reduced maintenance hours by about: 16% 

• The saving in maintenance hours (at minimum) is about:  92 hours per year  

 

Lessons learned: To develop and apply statistical models for supporting PdM, it is always crucial to have 
as much as possible failure data, which is not easy to find in the companies’ databases. Furthermore, 
advancing and integrating different technologies in a single automatic and digitised smart PdM system is 
a challenge that requires close collaboration between research and industry players. 
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4.6 PROPHESY system and industrial pilots 

4.6.1 RUL prediction for production tooling 

Motivation: The PROPHESY system and its components were evaluated in a real-life manufacturing 
environment, in Jaguar Land Rover (JLR) and Phillips factories. Within JLR and Philips, use-cases have been 
defined around the maintenance of cutting tools and cold forming tooling for high precision metal parts. 
The evaluation was performed by Philips and JLR employees (shop floor employees, engineers, IT 
specialists and management) and involve all aspects of the system, technical and economic. 

 

Solution: Data is being 
collected from several 
sources (material, machine, 
product, process and 
tooling) and fed into a set of 
PROPHESY-ML algorithms 
to determine the RUL of the 
wear parts involved. The 
PROPHESY-ML algorithms 
are trained to detect 
patterns in the data and 
predict failures without the 
need for ‘feature 
engineering’. 

 

Impact: The PROPHESY-ML RUL prediction is targeted to move from breakdown maintenance and 
preventative maintenance to predictive maintenance. The impact evaluation was performed by Philips 
and JLR employees (shop floor employees, engineers, IT specialists and management) and involve all 
aspects of the system, technical and economic, resulting in viable business cases for both the JLR and 
Philips PdM implementation. The techno-economic impact of the PROPHESY PdM instantiations was 
evaluated by assessing the status of selected KPIs, as defined for both JLR and Philips at the start of the 
project. Indicatively, at Philips, the MTTR has slightly increased at M36 of the project, with significant 
improvement of the registered OEE. At JLR achieved consistent improvements in the amount of inventory 
of cutting tools and a steady improvement of MTTR and Technical Machine Availability. 

PROPHESY has also created a valuable portfolio of cost-benefit and optimization tools that is available 
online through the ecosystem either in the online web form format or through offline Excel spreadsheet 
downloadable forms-tools (www.pdm4industry.eu). These are offered for free in the online community 
to any registered member of the ecosystem. 

 

Lessons learned: 

• It is challenging to run a development project in a real-life production environment due to high 
pressure on production output. 

• Data collection from legacy systems brings some specific IT challenges. 

• Data understanding and data-pre-processing are crucial before starting the data analysis. 

 

Figure 25: Overview of Philips demonstrator  

http://www.pdm4industry.eu/
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• It was proven once more that close collaboration is needed between data scientists and process 
experts to get reliable results.  

• The results of PROPHESY-ML application to the use cases have been reported for both demonstrators 
in the project’s deliverables, achieving RUL prediction with accuracy as little as 4-5% Mean Absolute 
Percentage error. 

 

4.6.2 AR assisted (remote) maintenance 

Motivation: 

Newly developed technologies for video-assisted expert support and the advent of Augmented Reality for 
equipment service, triggered use cases within JLR and Philips.  Within JLR, breakage of critical machine 
components can cause a huge standstill of the equipment if the service engineer needs to fly in from 
mainland Europe. Within Philips, a use-case was defined to visualize relevant maintenance information 
for the maintenance technician, at the right moment and connected to live data sources as a visual aid to 
the right maintenance component. 

 

Solution: 

For the JLR use case, a remote service 
platform, based on the Oculavis 
SHARE system, has been developed 
and demonstrated. Equipment 
experts from abroad can be in contact 
with the service team of JLR and at the 
same time, involve a JLR process 
engineer. The Philips use case resulted 
in the PROPHESY-AR viewer; a multi-
purpose tool for both remote support 
as well as providing specific work 
instructions and visualization of (predicted) tooling information to the maintenance mechanic. 

 

Impact: The PROPHESY-SHARE platform, offering both remote service functionality as well as AR assisted 
tooling maintenance, is bringing various benefits to the maintenance ecosystem. The most important is 
the time savings in resolving maintenance issues that are directly translated to cost savings. It is estimated 
that time savings up to 66% can be realized (1 instead of 3 days solution time) and cost savings of up to 
90% (based on avoided downtime and travel costs) per remotely solved case. 

 

Lessons learned: 

• The PROPHESY-SHARE platform has developed into a multi-purpose tool for both remote support as 
well as providing specific work instructions and visualization of (predicted) tooling information to the 
maintenance mechanic. As a result, both industrial partners are considering investments in this 
technology. 

• The end-users are very eager to work with digital support systems that ease their job as it brings a 
single point of data. 

 

Figure 26: PROPHESY-SHARE AR support  
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• Quite some hurdles to take in the field of health and safety, IT security, GDPR (e.g. face blurring). 

• The development cycle with prototype demonstration v1-feedback from the end-users and other 
stakeholders-demonstration of an improved prototype v2-feedback from the end-users and inter-
departmental stakeholders worked very well. 

 

5 Standardization aspects of PdM 

5.1 Standardisation Overview 

Industry 4.0, embedded systems, semantic machine-to-machine communication, Internet of Things (IoT) 
and Cyber-Physical Systems (CPS) technologies are joining the virtual space and the physical world 
together. Industry 4.0 has the potential of becoming the universal language of production. Each process 
used in an Industry 4.0 system integrates existing and demonstrated technologies with new technologies 
and applications to address manufacturing issues. Therefore, the introduction of a harmonised set of 
industry standards is especially important. 

The fast growth and evolution of IoT make standardisation a challenging topic. Standardisation plays a key 
role in the upcoming development and spread of IoT. Particularly in IoT, standardization mainly aims at 
improving the interoperability of different applications and systems. Various standards used in IoT (such 
as communication standards, ontology standards and security standards) might be major drivers for the 
spread of IoT technologies. Specific issues in IoT standardisation include interoperability issues, radio 
access level issues, and security and privacy issues. 

 

5.2 Views on Maintenance standards and Predictive Maintenance 

Following a research activity developed by Antoine Despujols (AFIM) on Maintenance Standards, the 
standardisation bodies involved in maintenance standards, are classified into three different levels: 

▪ 1st Level: International Level: IEC (International Electronical Commission) and ISO (International 
Standardisation Organisation); 

▪ 2nd level: European Level: CENELEC (European Electrotechnical Commission) and CEN (European 
Committee for Standardisation); and 

▪ 3rd level: National Level: National Standardisation Institutes. 

Specific Technical Committees (TCs) on Maintenance are presented in Figure 27, including (i) 
Dependability, (ii) Mechanical vibration, shock and condition monitoring, (iii) Non-destructive 
examinations, (iv) Asset management, (v) Maintenance and (vi) National Maintenance Committees.  

 

https://www.afim.asso.fr/
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Figure 27: Standardization bodies involved in maintenance standards 

 

The following figure has been developed by Maintenance CEN/TC319 to group the standards into 4 parts. 

 

 

Figure 28: CEN/TC319 maintenance standards 

 

According to the terminology of CEM standards, different types of maintenance tasks can be related to 
PdM. 
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Figure 29: CEN/TC319 maintenance standards Maintenance tasks 

 

Figure 29 shows the evolution in time on the performance of a mechanical component that degrades and, 
eventually fails with complete degradation. 

By defining an acceptability threshold, it is possible to identify two states for the item:  

• Before the failure – at upstate – improvement maintenance tasks to restore the item into a state 

in which its physical characteristics are improved.   

• After the failure – at downstate – corrective maintenance tasks to restore the item into a state it 

can perform the required action. 

Failure can be defined as the condition when the curve crosses this threshold. The performance of these 
maintenance tasks can be based on time or be triggered by observation. Observe and Analyse tasks, which 
are the third type of tasks, are also directly connected with Predictive Maintenance.  

 

5.3 Maintenance terminology 

As maintenance terminology is identified as a need for interoperability (ability to exchange and make use 
of information), the terminologies used in various ISO, IEC and EN standards have been compared to 
assess their commonalities and differences. This work has been presented during the workshop 
"Interoperability for Maintenance" of the I-ESA 2020 conference and published4.  Regarding maintenance 
terminology, the I-ESA 2020 workshop participants have concluded that a shared framework will help the 
stakeholders from different disciplines and with different interests to cooperate consistently on a 
common system. System engineering principles, methods and tools seem to be the best candidate to build 
this shared framework. Besides this shared ontological basis, ontologically consistent modules shall be 

 
4 Maintenance terminology standards: some issues and the need of a shared framework for interoperability 

KERARON Yves , DESPUJOLS Antoine, I-ESA 2020. 
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edited by discipline experts. Further work shall address the governance of this set of modules and 
experiment with the benefit of advanced technological standards to use a set of periodically updated 
ontological modules for contextualized use cases.  Maintenance, responsible for the highest “Upstate” of 
a system, could be a prime activity to co-develop, complete, deploy and benefit from such a framework. 

 

5.4 Evaluation of Standards 

The collaboration within ForeSee Cluster allowed assessing standardisation opportunities and share 

knowledge and best practices. Relevant activities started in early 2019 and involved all projects of the 

ForeSee Cluster. 

The standardisation elements which were evaluated included interfaces, communication protocols, 

quality inspection, management systems, performance monitoring and key risk indicators for 

manufacturing while others will be further addressed in future activities. 

The most relevant Data-related standards and Maintenance-related Standards for ForeSee Cluster, 

representing respectively the Standardisation state of the art from a general point of view and specifically 

in the maintenance application area are listed in Annex II. 

To support the representation of how standards are being applied in the different projects Radar Charts 
have been adopted, created and periodically re-evaluated. The Radar Chart is a graphical representation 
of each standard listed in the Annex. 

The Radar Chart provides a simple view of the standardisation assessment, illustrating all the elements 

that may be of relevance to project developments. Furthermore, the Chart highlights the candidate 

standards for adoption as well as those standards that have been adopted as part of this joint effort. 

This chart in Figure 31 is divided into four quadrants, showing the ForeSee strategy for clustering the 

candidate standards - adoption, monitoring or participation in development, or even in Ecosystem 

development of standards. 

Each standard on the Radar Chart is used to provide visibility of the status and maturity of a standard or 

initiative. Each standard or initiative are first identified, and further continuously updated to track 

progress as the standard or initiative evolves. This continuous process of monitoring a standard or 

initiative includes the current action level (track, candidate or adopted), the quadrant and a link for a full 

description of the component standards.   

The Radar Chart categorized the list of standards into: 

- Transversal Standard: coloured in purple; 

- Domain/Discipline Standard – coloured in yellow;  

- Technological Standard: coloured in greed. 

The joint effort lead to the creation of two different radar versions, one for Data-Related Standards (Figure 

30) and one for Maintenance-Related Standards (Figure 31). 

To distinguish the overall data-related standards – which can be transversal to many different 

products/solutions – from the maintenance-related standards, it was then decided to perform a separate 

analysis.  
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Figure 30: ForeSee Radar Chart – Data-related standards 

 

The first chart highlights that the standards to support the data access, treatment and transfer (such as 

JSON, HTTP, NGSI, OPC-UA or QIF standards) are the most common. However, not only technological and 

domain standards are part of this ecosystem, Ontology – which is a broader area – assumes key 

importance, as well as Risk Management, Systems Engineering Process and Requirements Engineering. 

Even if these standards were initially developed for maintenance systems, they were clustered under 

Data-related Standards. Thus, PdM dedicated analysis aimed to promote the awareness on relevant 

standardisation, resulting from a broader scope on demonstrating the importance and best practices of 

standardisation in Industry 4.0. The Radar Chart on Maintenance-related standards is presented in the 

following figure (Figure 31). 
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Figure 31: ForeSee Radar Chart – Maintenance-related standards 

 

The Radar Chart on Maintenance-related standards includes two standards adopted by several ForeSee 

projects: IEC 60-812: Failure Modes and Effects Analysis (FMEA and FMECA) methodologies and MIMOSA. 

The first one supports the identification of potential failure modes, assessing the risk associated with 

those failure modes to carry out corrective actions to address the most serious concerns. The second one 

enables digital-physical asset lifecycle management spanning plants, platforms and facilities, 

standardising the interface between plant floor systems (including PdM) and EAM systems. 

“ANNEX I - Standards application in ForeSee projects” lists application examples of different standards in 
the Foresee projects. Such examples were presented during the webinar on “Standardisation Challenges 
for PdM under the ForeSee Cluster”, coordinated by INOVA+, which aimed to develop sustainable PdM 
solutions for the factory of the future.  
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5.5 Future Activities 

The ForeSee cluster will maintain the activities related to the maintenance terminology and radar charts 
for PdM. The availability of so-called SMART, Standards Machine Applicable Readable and Transferable, 
and ontologies or other "industrial commons" will be very helpful to support advanced maintenance 
strategies as PdM. Legacy data and applications remain an issue because of the lack of standardization, 
which makes it difficult to map their models to common ontologies. Considering the economic importance 
of the corresponding assets, alternatives still need to be explored. This is an active research topic with an 
impact on standardization strategies. 

 

6 Predictive maintenance: An Industrial Perspective  

6.1 Introduction 

Cheaper and more powerful and well-selected Condition Monitoring (CM) parameters and sensors, 
statistical and data-driven models, algorithms for specific functions, AI, ML, together with big data 
analytics, offer an unprecedented opportunity to track machine performance and health condition.  As 
the experience of Foresee cluster projects has indicated the evolution of current maintenance practices 
from condition-based – to - Smart Predictive Maintenance (Smart PdM) would be an important success 
factor for manufacturers to reach fewer stoppages, longer production time, higher productivity, stable 
product quality, reduced defective products and enhanced profitability and competitive advantages.  

Reactive and preventive (i.e. regularly time-based planned) maintenance are, in general, still dominating 
the maintenance implementation in an application does not matter what sector in the industry. However, 
it is estimated that manufacturers still, in general, spend only 15% of their total maintenance costs on 
predictive (vs reactive and preventative) maintenance.  

 

6.2 Projects ‘Objectives 

The ForeSee cluster projects aimed to deploy, test and demonstrate a Smart PdM decision support system 
(DSS) able to, for example, identify and localize damages (i.e. in which machines and components), assess 
damage severity, predict damage evolution, assess remaining asset life, reduce the probability of false 
alarms, optimize maintenance for production planning, provide more accurate damage detection, issue 
notices to conduct necessary maintenance actions and ultimately increase in-service efficiency of 
machines cost-effectively. These notices take the form of recommendations describing what, where, why, 
how and when latest to conduct a maintenance action, i.e. in transparent notices and not as a 
recommendation from a black box. 

In addition, it allows follow up maintenance and production performances using both technical and 
economic measurable variables to check whether maintenance generates saving/profits or acquires 
additional cost. 

The focus of the projects has been to develop and apply from different perspectives innovative systems 
for Smart Predictive Maintenance as new models for sustainable factories and Maintenance 4.0. These 
systems can also be counted as a predictive, intelligent, digitalized and automated CBM using one or more 
CM parameters (including the time to failure) to describe and follow up the condition of a machine (and 
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its significant components), assess its current condition and predict its condition development in the near 
future in a cost-effective way.  

The systems gather information from maintenance-related areas, such as machines, production, quality, 
energy, materials, and economy. Its performance is digitalized and automated using either a probabilistic 
or deterministic, or a combination of probabilistic and deterministic approaches.  

The overall objectives of the projects are to maintain machine quality (i.e. to maintain the machine 
technical specifications), reduce the probability of failures and shortening downtime, ease conducting 
maintenance actions through facilitating the integration of additional necessary technologies, such as 
Augmented Reality (AR) and Virtual Reality (VR), tools/systems to follow up maintenance impact on 
company business, and secure production planning to enhance production continuity and company 
profitability and competitiveness.  

The cluster projects have been evaluated concerning the direct impact of the platform on, among others, 
maintainability, availability, work safety, material and energy losses and costs as well as environmental 
impact, the Smart PdM benefits, pay off possibility and time range of the pay-off. The evaluation of the 
projects’ demonstrations in the industrial use cases highlighted an impressive, positive impact on the key 
performance indicators (KPIs) and expectations (see chapter 4). 

 

6.3 Development of Smart PdM 

To develop a Smart PdM, it is necessary to survey the manufacturing machines in a company to identify 
critical machines and their significant components (i.e. the components whose failure either expensive or 
dangerous) to be monitored by the Smart PdM-system. The Smart PdM-system concept and design should 
properly be defined and determined. The concept shows in an overview plan how it works, what possible 
functions can be achieved, the type of data necessary and how the data flow will be. The design usually 
shows how all the elements constructing the system will interact to secure the interoperability and 
functionality of the system. 

This work sequence enabled the consortiums to design concretely Smart PdM-systems and their 
functionalities in collaboration with use cases. For example in the PRECOM project 24 (hardware and 
software) modules were connected to a centralised cloud and the overarching intelligence, Brain (i.e. the 
steering rules to secure data flow, interoperability and right recommendations to the end-user 
companies). 

Second, the projects developed and adapted the selected modules and technologies for making them 
interoperable for specific applications related to the use case companies involved in the projects. 

Third, in some cases, lab tests of individual modules/technologies and the overall system were conducted 
to verify and validate them. 

Finally, the PdM systems were applied in about 12 months of demonstration and validation in the targeted 
industrial use cases, with continuous monitoring and evaluation of its impact. 

The evaluation of the six projects showing the impact achieved in the use cases is summarized in Chapter 
4. The project finalised solutions go beyond the state of the art of solutions for predictive maintenance 
(Maintenance 4.0) currently available in the market.  

We demonstrated and validated the developed PdM in an operational environment with important results 
of economic impact for manufacturing companies which was achieved through, e.g. avoiding unnecessary 
stoppages, improving production and maintenance planning. 
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Furthermore, manufacturing and support machines and component builders benefited from the system 
for better monitoring and identification of weakness in the machine, data describing deterioration and 
breaks, which can lead (in the medium-/long-term) to improvements in the next generation of machines 
and components.  

In addition, the whole process is based on securing that the data gathered are of high quality and from 
healthy sensors. Therefore, we developed modules for detecting unhealthy sensors, i.e. to secure data 
quality. Also, in many cases were not possible to find digitalised data. Therefore, for fully digitalizing and 
automating Smart-PdM, manually collected data is digitalised and automated. 

At the end of the projects, a working and effective Smart PdM system is developed, as well as a set of 
modules/sub-systems which can be exploited also individually (or in other combinations). The PdM 
systems showed that they impact positively on the levels of in-service availability, maintainability, quality, 
economy and worker safety. 

 

6.4 Approaches of PdM 

However, industrial experience and applications, and the projects of the ForeSee cluster have 
demonstrated that PdM can take several shapes based on the concept, objectives, area of application, 
model(s), data/experience and approaches used to develop it. For example, 

1. PdM can be based solely on a statistical model using time-axis (e.g. calendar or age), such as the case 
in developing statistical models for predicting the residual life (Al-Najjar, 1997), (Jardine et al., 2006). 

2. PdM can use several parameters including vibration, shock pulses, temperature monitoring and 
acoustic emission (De Azevedo, Araújo and Bouchonneau, 2016; Macchi, Roda and Fumagalli, 2017). 
These parameters can be utilized through converting condition monitoring (CM) values of one or more 
of CM parameters to the time –axis, e.g. using Proportional hazard Model, to predict the condition of 
a machine through predicting, e.g. the time to failure (residual life) and assessing the probability of 
failure (Jardine et al., 1987). 

3. It also can be based on using the engineering approach, i.e. deterministic, through applying physical 
assessment of the deterioration and/or the forces exposed to evaluate the status of 
equipment/component associated with individual-based experience to predict failure behaviour 
(prognosis) and subjectively assess the time to maintenance (Al-Najjar, 1997). 

4. As it is well-known, it is not always possible to describe reality with the accuracy demanded by 
industry, such as the time to replacement/action, by using only statistical models or by applying the 
deterministic approach. Therefore, a combination of the deterministic and probabilistic approaches 
is recommended (Al-Najjar and Algabroun, 2017). Deterministic/engineering approach is 
recommended especially when there is enough information/data describing what happened and what 
is ongoing. The probabilistic approach is recommended to apply when it concerns predicting future 
damage development depending on what has happened based on facts (CM measurements) (Al-
Najjar, 2012). The combination of these two approaches will describe reality and anticipate what may 
happen with higher accuracy (Anagiannis et al., 2020). 

Industrial experience shows that using different approaches in developing PdM may lead to different 
accuracy in planning maintenance actions, which has a dramatic impact on industrial application i.e. 
conducting maintenance action too early and losing about 50% of the replaced component effective life 
(Al-Najjar, 1998) or too late after failures. 
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Therefore, we claim that PdM can be classified with respect to the approach used in the development, 
see also Figure 32.  

Thus, it is very important for any manufacturing company when selecting a Smart PdM for their assets to 
consider several factors, for example  

1. Whether the Smart PdM system concept and design fit the company infrastructure, 
2. The system objectives and accuracy. It is necessary to answer the following questions, such as:  

• Is the system designed for detecting damages at an early stage? 

• does it enable damage to follow up? 

• does it provide enough lead time for conducting maintenance actions when a warning for 
replacement is activated? 

• what is the accuracy of detection, and recommendation?  
3. Whether the areas of applications of the Smart PdM system cover the company´s manufacturing 

process and environment, 
4. Model(s) and approaches used to develop the system and the availability of the data needed. The 

data needed should be available and in the format demanded by the system and models 
constructing it. 

 

 

Figure 32: Classification of PdM 

 

When using a combination of deterministic and probabilistic approaches, Smart Predictive Maintenance 
(Smart PdM) can also be defined as “a Smart, predictive, digitalized, with self-learning and automated 
Condition-based Maintenance (CBM) using one or more CM parameters, statistical and data-driven 
models”. These CM parameters include even the time to failure. Smart PdM should be able to describe 
and follow up the condition of a machine (and its significant components), assess its current condition, 
predict its condition development in the near future and recommend what, when, why and how to act 
cost-effectively. 

Therefore, it has been realised that the major goals of applying Smart PdM are: 

• Maintain machine quality (i.e. maintain the machine technical specifications); 

• Better control of the condition of manufacturing machines; 

• Reduce the probability of failures and unnecessary stoppages and therewith probable failure 
related accidents, as well as downtime;  
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• Ease conducting maintenance actions through facilitating and integrating the application of 
Augmented Reality (AR) and Virtual Reality (VR); 

• Reduce losses in energy and material; 

• Enhance working environment satisfaction and experience for the human operators, contributing 
also to their health; 

• Reduce environmental effect; 

• Enhance production continuity, reduce production and maintenance costs, follow up 
maintenance impact on company business and consequently increase profitability and 
competitiveness. 

• Smart PdM is to acquire and implement Maintenance 4.0 meeting the demands from Industry 
4.0, where the production is mainly digitalized and automated. 

 

6.5 Performance and Technology Necessary for Smart PdM 

Smart PdM is considered to gather data/measurements/ information from all maintenance-related areas, 
such as machines, production, quality, energy, working environment and economy. Smart PdM and its 
performance is digitalized and automated applying statistical and data-driven models. To achieve the 
goals above, Smart PdM uses different technologies as it is experienced in several manufacturing 
companies included in the project, such as:  

• One or more of the CM parameters including time should be addressed to monitor a wide range of 
machine deterioration processes and to enhance the accuracy of diagnosis and prediction, such as the 
case when using, e.g. temperature and sound, for supporting vibration signal analysis. In addition, 
using the time (e.g. age and calendar time) is for, for example, statistical modelling and especially for 
non-rotating components, 

• Wireless/wired sensors (even the embedded sensors), PLCs are necessary for data gathering needed 
to detect changes in the machine condition at an early stage. It is not always possible to use wireless 
due to disturbances in the manufacturing environment.  

• AR, (Mourtzis et al., 2017) and VR: AR has shown very big potential in  decreasing the time to repair, 
i.e. enhancing maintainability, shortening the time for training new technicians and maintaining 
experience to be utilized by any technician even if she/he was not specialist in the specific task needed 
to be repaired, 

• AI and ML for, for example; controlling data flow, securing communications, preventing streaming of 
recommendations and warnings, and providing the end-user with the right recommendations. 
Besides, the self-learning is very significant to enable Smart PdM re-adjusting constants, parameters 
and warning levels at need, e.g. at failures, 

• Cloud/databases are important assets for automatic data gathering, calculations, control and saving. 
At the same time, manual data gathering analysers can also be considered, because in some cases, as 
we experienced in the industry, people need to make manual measurements especially when the 
system detected unhealthy sensor or when there is a warning while the production manager needs 
the production to continue, or when a measurement is rejected by the system due to a big deviation 
from the behaviour pattern,  

• IIoT, IIoS, IIoT platform, digital twins, gateways, big data analytics software for automatic analysis, 
diagnosis, prediction, and recommendations are all necessary for conducting activities from  data 
acquisition to the recommendations sent to the end-user, 

• Modules for detecting unhealthy sensors to avoid acquiring data of bad quality, 
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• Automatic maintenance actions using actuators, e.g. for adjusting production speed, changing 
lubricant amount, start-stop of production, 

• Communication system to support the integration of maintenance, with other databases and systems, 
such as production, quality, economy. 

 

6.6 Return On Investment In Maintenance (ROIIM) 

To motivate applying Smart PdM, it is necessary to properly highlight its added values. The goals 
mentioned above in technical terms, such as fewer failures and unnecessary stoppages, longer production 
time, lower energy consumption and fewer accidents can always be converted to money (Al-Najjar, 2007) 
to estimate the amount of savings (or additional cost) being achieved by effective maintenance.  

In some cases it is easy to assess the value added by maintenance, for example avoiding any failure (due 
to detecting damage initiation and follow up its development to amend it when the company wish and 
not when the machine decided, e.g. at failure) means converting the stoppage time to production time, 
e.g. when the maintenance action is conducted during production planned stoppages which is possible to 
arrange, given that every produced item will be sold, the gain is then very easy to assess. The same thing 
can be said about reducing the downtime, i.e. the time needed to restore a machine after failure or due 
to condition-based replacement. In a failure situation, the Smart PdM supports the repair process by 
facilitating the integration of AR to show how a maintenance action should be conducted enabling even 
a technician who did not do it before to do it effectively. AR aims to shorten the repair time and enhance 
maintainability, which saves an appreciable amount of production time. 

Fewer failures and unnecessary stoppages prolong production time, which can also be assessed and 
converted to money easily. The energy consumption and the reduction in energy losses are also possible 
to measure, follow up and improve continuously (Al-Najjar and Algabroun, 2018). 

Maintaining machine quality (i.e. maintaining machine technical specifications) means preserving the 
capital invested in manufacturing assets and prolonging its service beyond the planned time. The benefits 
of it are not easy to anticipate in advance, but they can be calculated after hand. 

The list of the value added by maintenance is much longer, which is motivating investments in 
maintenance especially when it is possible to follow up investments in maintenance by using Return on 
Investment In Maintenance (ROIIM) that will be provided by the Smart PdM. 

According to our experience and results from Worldwide research and industrial applications, the pay-off 
of maintenance can be assessed. It is 5-9 times the annual cost of applying effective maintenance (Al-
Najjar, 2007). However, this result is impossible to assess, follow up and improve using the currently 
implemented accountancy system, where the whole maintenance budget is counted as a mere cost.  

Therefore, it can be necessary that Smart PdM consist of a special module providing information about 
the technical and economic impact of maintenance, as well as the ability in estimating the Return on 
Investment in Maintenance (Al-Najjar, 2009). 

Maintenance management skills, as the method on how to lead maintenance, are using planning and 
scheduling best practices that will bring the work implementation and time-management techniques to 
improve maintenance productivity. When talking of PdM, we could briefly summarise a few competencies 
and maintenance management skills from the practitioner point of view (necessary today) as following 
(Bokrantz, 2017): 
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• Life cycle value realization activities that are taking place in conducting the cost and benefit analysis 
for the maintenance operation over the life cycle. 

• Operation and maintenance decision making is performed to define and use relevant information for 
decision making while understanding and practising the asset management objectives and goals. 

• Capital investment decision making is involved to understand the consequences of capital investment 
for the maintenance process while evaluating and analysing the consequences.  

• The resourcing strategy is executing the developed work plan to accomplish the maintenance 
operation about the asset management objectives and plan. 

• Asset information strategy is performed ensuring that the maintenance process is acting according to 
it.  

• Technical standards and legislation control, ensuring that relevant technical standards and legislation 
are followed in the maintenance process 

• Systems Engineering that is guaranteeing that the maintenance process operates according to the life 
cycle balance system, etc. 

 

6.7 Practitioners checklist 

In order to identify the key actions, we should consider the big picture of a manufacturing company 
including the objective stated for maintenance. The major goal of applying Smart PdM described above, 
is to meet the demands of Industry 4.0 when the production is totally or greatly digitalized and 
automatized, which is the expected case in factories of the future. 

The key actions that are necessary for establishing and implementing Smart PdM can be retrieved by 
answering the following key questions: 

• Is there a clear and written maintenance strategy and policy to specify? 

• How is it important to maintain the quality of manufacturing assets?  

• how is it important having accurate damage detection, follow up and prediction of the time to 
maintenance action? 

• Is it significant and beneficial for the company to detect, localize and assess damages? 

• Is it significant and beneficial for the company to have an automatic recommendation about what, 
where, why, how and when latest to conduct a maintenance action? 

• Is it significant and beneficial for the company to have a knowledge base (which is necessary to 
document, update and maintain all company-new experience and knowledge developed in 
maintenance) in addition to the database for historical data? 

• Is it significant and beneficial for the company to enhance and complete the available competencies 
with the application of AR and VR? 

• Is it necessary to see over, control and reduce energy and material consumption and their losses? 

• Is it demanded to improve the work environment and human health through reducing noise, 
temperature, and vibration in the surroundings? 

• Is it demanded to reduce the environmental effect through more efficient maintenance that reduces 
the machine effect on the environment? 

• Is it considered that maintenance can be utilized to reduce breakdowns and stoppages to enhance 
company productivity and profitability? 

• Is it a competitive advantage to develop and apply a maintenance strategy meeting the needs of 
Industry 4.0? 
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Answering these questions provide the underlying information, knowledge, experience, and well-
specified expectations necessary to select and implement effectively a Smart PdM.  

Practising and implementing new technologies is challenging. Furthermore, applying new technologies to 
make maintenance more effective, such as implementing Smart PdM as a new paradigm, is more 
challenging especially if the infrastructure is not ready for these technologies (Algabroun et al., 2020).  

The unsuitability of the infrastructure should be considered from different perspectives. For example, 
those perspectives which are related to one the following: 

• juridical definition of the ownership of the technical and economic raw data,  

• the willingness of companies to communicate through internet data input and output,  

• plans regarding how long time the raw data and analysis results should be stored, where and on 
whom´ expense, 

• besides, investments to implement Smart PdM always demands justifications that is realized by 
how much and when it will pay back.  

In many companies, it is still difficult to find high-velocity internet needed for quick and quality 
communication, calculations and sending recommendations, which will, in turn, influences the 
performance reliability of advanced technologies, such as Smart PdM, aimed to enhance e-maintenance 
efficiency, which will reduce the potential benefits of the application. 

 

7 Recommendation for future research directions and innovation 
policy 

7.1 Development of Structured Data Repositories with Industry4.0 and Predictive 

Maintenance Datasets  

Predictive maintenance (PdM) is a data-intensive task. It involves training Machine Learning (ML) and 
Artificial Intelligence (AI) algorithms to predict parameters like the RUL (Remaining Useful Life) and the 
EoL (End of Life) of assets. The development of such algorithms requires appropriate datasets for their 
training. However, such datasets are not widely and openly available, which is a setback to AI-based 
deployment and related innovations in the field of maintenance. Likewise, as witnessed by some of the 
ForeSee cluster projects, manufacturers do not have readily available datasets for ML/AI as their data 
collection processes record selective data rather than the full range of possible datasets. For example, 
even if in several cases information about failures and abnormalities tends to be collected in digital form, 
not all data associated with normal behaviours are recorded. In other cases, it is quite difficult to collect 
proper datasets for training AI programs, due to the lack of historic data with failures and abnormalities. 
This is the typical case regarding new machinery that has not suffered enough failures in the past. 

Overall, the development of effective AI/ML systems that meet their business and manufacturing 
maintenance objectives requires rich datasets.  It is therefore recommended that: 

• Manufacturers and other industrial organizations establish internal data collection processes that will 
boost their ability to develop, deploy and fully leverage the capabilities of AI systems. 

• Industrial organizations and R&D policymakers invest in the collection and structuring of open data 
repositories to support manufacturers and solution providers (including SMEs) in their efforts to 
innovate based on ML and AI in enterprise maintenance. The development of such databases will have 
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to take care of IP (Intellectual Property) issues and to address regulatory requirements (e.g., 
compliance to mandates of the GDPR (General Data Protection Regulation). 

 

7.2 Testbeds for predictive maintenance, condition-based maintenance and intelligent 

asset management 

The digitalization of the industry entails deploying and testing IT systems in real-life production lines. It’s 
of uttermost importance that this action is performed without disrupting production. This puts certain 
limitations on the experimentation with PdM and intelligent asset management systems. To accelerate 
innovation and digital transformation in industrial asset management it’s therefore important to establish 
proper testbeds for PdM, condition-based maintenance and intelligent asset management. Such testbeds 
could for example be developed in the scope of industrial DIH (Digital Innovation Hubs). They should 
comprise equipment, algorithms, tools and datasets for innovation and experimentation.  

 

7.3 AI-based Maintenance and Asset Management Systems for the Non-Experts 

Many AI and ML systems for PdM (e.g., Deep Learning systems) operate as black boxes that provide 
limited insights about their operations to maintenance workers and domain experts. This limits the 
trustworthiness and potential acceptance of these systems by maintenance professionals. Likewise, most 
AI/ML systems are not easily and flexibly usable by workers and domain practitioners. For example, there 
is no easy way for retraining models based on new data and applying them on the field, without the 
involvement of IT experts and integrators of digital automation solutions. To alleviate these limitations, 
future research should focus on AI/ML systems that can be understood and used by non-tech experts. In 
this direction, research in the following areas is needed: 

• Explainable AI (XAI) systems provide insights into the inner workings of AI algorithms and boost the 
transparency and acceptance of AI systems. For example, systems that identify the dominant features 
used by a deep neural network to pinpoint possible defects or to predict the need for field service can 
greatly help maintenance workers to understand how Deep Learning systems work. XAI is currently a 
very topical research area for AI and its application in the maintenance field could provide value to 
industrial organizations (Christou et al., 2020b). 

• Automatic ML (AutoML) systems enable non-tech experts to execute data-driven workflows and 
pipelines. Coupled with intuitive interfaces like dashboards and AR (Augmented Reality) interfaces 
AutoML systems can facilitate non-experts in exploiting the power of AI in maintenance and asset 
management. 

 

7.4 Standardization, data and semantics interoperability 

Industry4.0 systems for condition-based maintenance and intelligent asset management are based on the 
collection, consolidation and processing of datasets from diverse data sources, including sensors, cyber-
physical systems, maintenance databases, Computerized Maintenance Management (CMM) systems, as 
well as business information management systems (like ERP -Enterprise Resource Management- systems). 
The interoperability of these diverse (in terms of their different semantics and formats) data sources is a 
key prerequisite for their proper processing. Over the years various standards-based formats for unifying 
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the semantics of these data sources have been produced. Research and standardization in this direction 
will therefore continue and it will also affect the way Big Data databases and open datasets will be 
structured. However, some of the projects of the ForeSee cluster have also successfully experimented 
with alternative approaches that link diverse data sources and datasets, in line with known standards and 
proposals for linking different systems, such as MIMOSA’s common interoperability registry (CIR). Both of 
the above directions need to be further explored, implemented in real systems and evaluated in terms of 
their pros and cons. 

 

7.5 Business Modelling for Condition Based Maintenance and Intelligent Asset 

Management 

Despite the proclaimed benefits of CBM (Condition Based Maintenance) and PdM (Predictive 
Maintenance) (e.g., less unscheduled downtimes, increased value for the assets, improved asset 
utilization), novel business models associated with these maintenance approaches are still in their infancy. 
There are still several business questions that remain unanswered when it comes to offering novel services 
like “Asset-as-a-Service” and “CBM-as-a-Services”. Some of these questions include the ownership of the 
data, as well as how an OEM (Original Equipment Manufacturer) could increase its revenues based on the 
new approach. Furthermore, there are open questions about how to formulate SLAs (Service Level 
Agreements) for the above-listed utility-based services.  

In this context, there is a need for further research on business modelling, including validation of such 
business models in practice. To achieve successful business modelling, there is the need for tools and 
techniques that can calculate techno-economic parameters and resolve relevant trade-offs. Some of the 
projects of the cluster have successfully dealt with this issue and provided tools and techniques for 
calculating the most important KPIs (Key Performance Indicators) in this process, such as OEE (Overall 
Equipment Efficiency), LCC (Life Cycle Cost), RAV (Remaining Asset Value) and ROI (Return On Investment). 

 

7.6 Mobile Management  - Mobile-First Condition Based Maintenance 

Many enterprises in different sectors are currently implementing “Mobile-first” strategies as part of their 
digital transformation.  This is largely due to the rapid penetration of mobile devices within workers’ 
communities, but mainly to the convenience and value-added features that a mobile-first strategy can 
offer (e.g., instant access to the status of assets). There is a need for more research on how enterprise 
maintenance could benefit from mobile-first strategies. This includes studying how mobile devices can be 
combined with visualization modalities like Augmented Reality (AR) and Virtual Reality (VR) or natural 
language dialogue-based technologies such as Digital Intelligent Assistants.  

 

7.7 Smart and Autonomous Objects  

In recent years the world is witnessing the rise of smart objects i.e. objects with semi-autonomous 
behaviour such as robots, drones and automated guided vehicles. In the medium and long term, such 
smart objects will start taking over enterprise maintenance tasks, such as quality inspections and 
information gathering about assets. The use of such objects could offer many advantages such as richness 
in the data collection, inspections in harsh environments, speed, cost-efficiencies, optimization of 
workers’ productivity and more. Robotic cells are already used in quality management tasks (e.g., quality 
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inspection) and their use will be extended in enterprise maintenance. In this context, the collaboration 
between robots, smart objects and maintenance workers (i.e. co-bots) should be researched.  Digital Twin 
technology is also expected to contribute to this objective as it enables the real-time and two-way 
mapping between physical objects and digital representation with smart capabilities. 

 

7.8 Training - Education - Lifelong Learning 

Currently, there is a proclaimed gap in knowledge associated with CBM/PdM and on the underlying 
technologies that support these maintenance modalities (e.g., BigData, data collection). As humans 
remain the most flexible and precious resources on the shopfloor, successful CBM/PdM deployments 
require properly trained and skilled workers. In this direction, training, education and lifelong learning 
should be among the most important directions for industrial policymaking. Along with the development 
of PdM systems, there is a need for structuring knowledge bases/assets and engaging workers in upskilling 
and “reskilling” processes. 

 

References 

ABI Research, “Maintenance Analytics to Generate $24.7 Billion in 2019, Driven by Predictive Maintenance 

and Internet of Things”, (2014). 

M.G.S. Aboelmaged, “E-maintenance research: a multifaceted perspective”, Journal of Manufacturing 

Technology Management, pg. 606–631, (2015). https://doi.org/10.1108/JMTM-02-2013-0009. 

F. Aggogeri, R. Adamini, P. Aivaliotis, A. Borboni, A. Eytan, A. Merlo, I. Nemeth, C. Taesi, N. Pellegrini, 

"Robotic System Reliability Analysis and RUL Estimation Using an Iterative Approach", Advances in 

Service and Industrial Robotics (RAAD 2019), pg. 134-143, 19-21 June, Kaiserslautern, Germany, 

(2019). 

P. Aivaliotis, E. Xanthakis, A. Sardelis, “Machines' Behaviour Prediction Tool (BPT) for maintenance 

applications”, Advanced Maintenance Engineering, Services and Technologies - 4th AMEST 2020, 

(2020). 

P. Aivaliotis, K. Georgoulias, K. Alexopoulos, "Using digital twin for maintenance applications in 

manufacturing: State of the Art and Gap analysis", International Conference on Engineering 

Technology and Innovation (ICE IEEE), Available Online, 17-19 June, Sophia Antipolis, France (2019) 

P. Aivaliotis, K. Georgoulias, Z. Arkouli, S. Makris, "Methodology for enabling Digital Twin using advanced 

physics-based modelling in predictive maintenance", 52nd CIRP CMS Conference, (CIRP CMS 2019), 

Procedia CIRP, Vol. 81, pg.417-422, 12-14 June, Ljubljana, Slovenia, (2019). 

P. Aivaliotis, K. Georgoulias, R. Ricatto, M. Surico, "Predictive maintenance framework: Implementation 

of local and cloud processing for multi-stage prediction of CNC machines’ health”, Predictive 

Maintenance in Industry 4.0, I-ESA, pg. 255-261, 19-23 March, Berlin, (2018). 

P. Aivaliotis, K. Georgoulias, G. Chryssolouris, "A RUL calculation approach based on physical-based 

simulation models for predictive maintenance", International Conference on Engineering Technology 

and Innovation (ICE IEEE),27-29 June, Madeira Island, Portugal, (2017). 

https://doi.org/10.1108/JMTM-02-2013-0009


 

ForeSee Cluster - White Paper 80 | Page 

P. Aivaliotis, Z. Arkouli, K. Georgoulias, S. Makris, “Degradation curves integration in physics-based 

models: Towards the predictive maintenance of industrial robots”, Robotics and Computer-Integrated 

Manufacturing, Vol. 71, 102177, (2021). 

P. Aivaliotis, K. Georgoulias, G. Chryssolouris, "The use of Digital Twin for predictive maintenance in 

manufacturing", International Journal of Computer Integrated Manufacturing, Vol. 32, No. 11, pg. 

1067-1080, (2019). 

K.M. Alam, A. El Saddik, “C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-

Physical Systems”, IEEE Access. Vol. 5, pg. 2050-2062, (2017). 

https://doi.org/10.1109/ACCESS.2017.2657006. 

Algabroun, J. Bokrantz, B. Al-Najjar, A. Skoogh, “Development of digitalised maintenance-a concept”, 

Journal of Quality in Maintenance, (2020). doi: 10.1108/JQME-04-2019-0039. 

B. Al-Najjar, H. Algabroun,  “Maintenance 4 . 0 to fulfil the demands of Industry 4.0”, Manuscript 

submitted for publication, (2017). 

B. Al-Najjar, H. Algabroun, “A Model for Increasing Effectiveness and Profitability of Maintenance 

Performance: A Case Study”, Engineering Asset Management 2016. Lecture Notes in Mechanical 

Engineering, Springer, pg. 1–12, (2018). 

B. Al-Najjar, “Condition-based maintenance: Selection and improvement of a cost-effective vibration-

based policy in rolling element bearings”, Doctoral thesis, ISSN 0280-722X, ISRN LUTMDN/TMIO—

1006—SE, ISBN 91-628-2545-X, Lund University, Industrial Engineering, Sweden, (1997). 

B. Al-Najjar, “The Lack of Maintenance and not Maintenance which Costs: A Model to Describe and 

Quantify the Impact of Vibration-based Maintenance on Company's Business”, International Journal 

of Production Economics, Vol. 107, No. 1, pg. 260-273, (2007) 

B. Al-Najjar, “Improved Effectiveness of Vibration Monitoring of Rolling Element Bearings in Paper Mills”, 

Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 

212, No. 2, pg. 111-120, (1998). 

B. Al-Najjar, “A computerized model for assessing the return on investment in maintenance; Following up 

maintenance contribution in company profit”, Engineering Asset Lifecycle Management, pg. 137-145, 

Springer, London, (2010). 

B. Al-Najjar, “On establishing and running a condition-based maintenance policy; Applied example of 

vibration-based maintenance”, Journal of Quality in Maintenance Engineering, Vol. 18, No. 4, pg. 401-

416, 

I. Anagiannis, N. Nikolakis, K. Alexopoulos, “Energy-Based Prognosis of the Remaining Useful Life of the 

Coating Segments in Hot Rolling Mill”, Applied Sciences, Vol. 10, No. 19: 6827, (2020). 

doi:10.3390/app10196827. 

Z. Arkouli, P. Aivaliotis, S. Makris, “Towards accurate robot modelling of flexible robotic manipulators”, 

8th Conference on Assembly Technology and Systems (CATS), Procedia CIRP, (2020). 

A. Artikis, A. Gal, V. Kalogeraki, M. Weidlich, ”Event recognition challenges and techniques: Guest editors' 

introduction”, ACM Transactions on Internet Technology (TOIT), Vol. 14, No.1, pg. 1-9, (2014). 

https://doi.org/10.1109/ACCESS.2017.2657006.


 

ForeSee Cluster - White Paper 81 | Page 

Augmensys, "Maintenance 4.0 | Predictive Maintenance with Augmented Reality and OCR”. Retrieved 

from: https://www.augmented-industries.com/en/ubik/ .  

X. Bampoula, G. Siaterlis, N. Nikolakis, K. Alexopoulos. “A Deep Learning Model for Predictive Maintenance 

in Cyber-Physical Production Systems Using LSTM Autoencoders”, Sensors, Vol. 21, No. 3: 972, (2021). 

https://doi.org/10.3390/s21030972 . 

N. Bicocchi, G. Cabri, F. Mandreoli, M. Mecella, “Dealing with data and software interoperability issues in 

digital factories”, M. Peruzzini, M. Pellicciari, C. Bil, J. Stjepandić, N. Wognum (Eds.), Transdiscipl. Eng. 

Methods Soc. Innov. Ind. 4.0 - Proc. 25th ISPE Inc. Int. Conf. Transdiscipl. Eng. July 3 – 6, pg. 13-22, 

(2018). https://doi.org/10.3233/978-1-61499-898-3-13. 

C. Bizer, T. Heath, T. Berners-Lee, “Linked Data - The Story So Far”, International Journal on Semantic Web 

and Information Systems (IJSWIS), Special Issue on Linked Data, Vol. 5, No. 3, pg. 1-22, (2009). 

J. Bokrantz, “On the Transformation of Maintenance Organisations in Digitalised Manufacturing”. 

Chalmers University of Technology, (2017). Available at: 

https://research.chalmers.se/publication/248792. 

Boston Consulting Group, “The Maintenance Advantage in Manufacturing Achieving Excellence in Three 

Dimensions”, (2013). 

A. Bousdekis, N. Papageorgiou, B. Magoutas, D. Apostolou, G. Mentzas, “A real-time architecture for 

proactive decision making in manufacturing enterprises”, OTM Confederated International 

Conferences" On the Move to Meaningful Internet Systems", pg. 137-146, (2015). 

A. Bousdekis, B. Magoutas, D. Apostolou, G. Mentzas, “A proactive decision making framework for 

condition-based maintenance”, Industrial Management & Data Systems, Vol. 115, pg. 1225–1250, 

(2015). https://doi.org/10.1108/IMDS-03-2015-0071. 

A. Bousdekis, B. Magoutas, D. Apostolou, G. Mentzas, “Review, analysis and synthesis of prognostic-based 

decision support methods for condition based maintenance”, Journal of Intelligent Manufacturing, 

Vol. 29, No. 6, pg. 1303-1316, (2018). https://doi.org/10.1007/s10845-015-1179-5. 

A. Bousdekis, N. Papageorgiou, B. Magoutas, D. Apostolou, G. Mentzas, “Enabling condition-based 

maintenance decisions with proactive event-driven computing”, Computers in Industry, Vol. 100, pg. 

173-183, (2018). https://doi.org/10.1016/j.compind.2018.04.019.  

A. Bousdekis, K. Lepenioti, D. Apostolou, G. Mentzas, “Decision Making in Predictive Maintenance: 

Literature Review and Research Agenda for Industry 4.0”, IFAC PapersOnLine, Vol. 52, No. 13, pg. 607-

612, (2019). https://www.sciencedirect.com/science/article/pii/S2405896319311772 . 

G.E. Box, G.M. Jenkins, G.C. Reinsel, “Time Series Analysis Forecasting and Gontrol FOURTH EDITION”, 

John Wiley & Sons, (2011). 

CEN EN, 13306, “Maintenance-Maintenance terminology”, (2010). 

F. Chinesta, E. Cueto, E. Abisset-Chavanne, J.L. Duval, F. El Khaldi, Virtual, “Digital and Hybrid Twins: A New 

Paradigm in Data-Based Engineering and Engineered Data”, Arch. Comput. Methods Eng. 27, pg. 105-

134, (2020). https://doi.org/10.1007/s11831-018-9301-4. 

https://www.augmented-industries.com/en/ubik/
https://doi.org/10.3390/s21030972
https://research.chalmers.se/publication/248792
https://doi.org/10.1007/s10845-015-1179-5
https://doi.org/10.1007/s11831-018-9301-4


 

ForeSee Cluster - White Paper 82 | Page 

W. Cholewa, “Expert Systems in Technical Diagnostics”, Fault Diagnosis, pg. 591–631, Springer, Berlin 

Heidelberg, (2004). https://doi.org/10.1007/978-3-642-18615-8_15. 

I.T. Christou, N. Kefalakis, A. Zalonis, J. Soldatos, R. Broechler, “End-to-End Industrial IoT Platform for 

Actionable Predictive  Maintenance”, IFAC-PapersOnLine, Vol. 53, No. 3, pg. 173-178, (2020). 

https://doi.org/10.1016/j.ifacol.2020.11.028. 

I.T. Christou, N. Kefalakis, A. Zalonis, J. Soldatos, "Predictive and Explainable Machine Learning for 

Industrial Internet of Things Applications," 2020 16th International Conference on Distributed 

Computing in Sensor Systems (DCOSS), Marina del Rey, CA, USA, pg. 213-218, (2020). doi: 

https://doi.org/10.1109/DCOSS49796.2020.00043. 

G. Chryssolouris, “Manufacturing Systems: Theory and Practice”, 2nd ed, New York, NY: Springer-Verlag, 

(2006). 

C. Cimino, E. Negri, L. Fumagalli, “Review of digital twin applications in manufacturing”, Comput. Ind., Vol. 

113, (2019). https://doi.org/10.1016/j.compind.2019.103130. 

M.R.B. Clarke,  “Pattern Classification and Scene Analysis.”, Journal of the Royal Statistical Society: Series 

A (General), Vol. 137, No. 3, pg. 442-443, (1974). https://doi.org/10.2307/2344977. 

CoBuilder, “The ‘digital twin’ – a bridge between the physical and the digital world”, (2018). 

https://cobuilder.com/en/the-digital-twin-a-bridge-between-the-physical-and-the-digital-world/ 

(accessed May 13, 2019). 

H.D.M., de Azevedo, A.M. Araújo, N. Bouchonneau, “A review of wind turbine bearing condition 

monitoring: State of the art and challenges”, Renewable and Sustainable Energy Reviews, Vol. 56, pg. 

368–379, (2016). doi: 10.1016/j.rser.2015.11.032. 

B. Denkena, P. Blümel, S. Kröning, Simulationsbasierte Instandhaltung, “Optimierung der 

Instandhaltungsplanung und -steuerung mit Hilfe ereignisorientierter Simulation”, Wt 

Werkstattstech, Vol. 100, pg. 598–603, (2010). 

S. El Kadiri, B. Grabot, K.-D. Thoben, K. Hribernik, C. Emmanouilidis, G. Von Cieminski, D. Kiritsis, “Current 

trends on ICT technologies for enterprise information systems”, Computers in Industry, Vol. 79, pg. 

14-33, (2016). https://doi.org/10.1016/j.compind.2015.06.008. 

Y. Engel, O. Etzion, Z. Feldman, “A basic model for proactive event-driven computing”, Proceedings of the 

6th ACM international conference on distributed event-based systems, pg. 107–118, (2012). 

https://doi.org/10.1145/2335484.2335496. 

Eurostat, “Archive: Repair and installation of machinery and equipment statistics – NACE Rev. 2”, (2015). 
Retrieved online from: https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Archive:Repair_and_installation_of_machinery_and_equipment_statistic
s_-_NACE_Rev._2&direction=prev&oldid=280085 . 

Fortune Business Inside (2019), https://www.fortunebusinessinsights.com/predictive-maintenance-

market-102104, (accessed online January 2021). 

FRAUNHOFER FEP, "Smart Service Welt Verbundprojekt "Glass@Service", Fraunhofer FEP, (n.d.), 

https://www.fep.fraunhofer.de/de/Geschaeftsfelder/Mikrodisplays_und_Sensorik/glass-at-

service.html  

https://doi.org/10.1007/978-3-642-18615-8_15
https://doi.org/10.1016/j.ifacol.2020.11.028
https://doi.org/10.1016/j.compind.2019.103130.
https://doi.org/10.2307/2344977
https://cobuilder.com/en/the-digital-twin-a-bridge-between-the-physical-and-the-digital-world/
https://doi.org/10.1145/2335484.2335496
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Repair_and_installation_of_machinery_and_equipment_statistics_-_NACE_Rev._2&direction=prev&oldid=280085
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Repair_and_installation_of_machinery_and_equipment_statistics_-_NACE_Rev._2&direction=prev&oldid=280085
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Repair_and_installation_of_machinery_and_equipment_statistics_-_NACE_Rev._2&direction=prev&oldid=280085
https://www.fortunebusinessinsights.com/predictive-maintenance-market-102104
https://www.fortunebusinessinsights.com/predictive-maintenance-market-102104
https://www.fep.fraunhofer.de/de/Geschaeftsfelder/Mikrodisplays_und_Sensorik/glass-at-service.html
https://www.fep.fraunhofer.de/de/Geschaeftsfelder/Mikrodisplays_und_Sensorik/glass-at-service.html


 

ForeSee Cluster - White Paper 83 | Page 

Gartner, ”Top 10 Trends in Data and Analytics for 2020”, (2020). Retrieved online from:  

https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-

2020/ 

E. Glaessgen, D. Stargel, “The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles”,  53rd 

AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th 

AIAA/ASME/AHS adaptive structures conference 14th AIAA, pg. 1818, (2012). 

https://doi.org/10.2514/6.2012-1818. 

M. Grieves, J. Vickers, “Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex 

systems”, iTransdiscipl. Perspect. Complex Syst. New Find. Approaches, Springer International 

Publishing, Cham, pg. 85–113, (2016). https://doi.org/10.1007/978-3-319-38756-7_4. 

A. Hess, G. Calvello, P. Frith, S. J. Engel, D. Hoitsma, “Challenges, issues, and lessons chasing the “Big P”: 

real predictive prognostics part 2.” 2006 IEEE Aerospace Conference, pg. 1-19, (2006). 

https://ieeexplore.ieee.org/abstract/document/1656124/?casa_token=fvj9QzBZ5sAAAAA:pW9E5s8

opKs_4lZ2bd-93Ty_BC_aEoCFakc1Cnq9F_27T5Vd07QzBTGmem_jz2xpZ9onG4Y. 

S.L. Ho, M. Xie, “The use of ARIMA models for reliability forecasting and analysis”, Computers & industrial 

engineering, Vol. 35, No. 1-2, pg. 213-216, (1998). 

https://www.sciencedirect.com/science/article/pii/S0360835298000667. 

S. L. Ho, M. Xie, T. N. Goh, “A comparative study of neural network and Box-Jenkins ARIMA modeling in 

time series prediction”, Computers & Industrial Engineering, Vol. 42, No. 2-4, pg. 371-375, (2002). 

https://www.sciencedirect.com/science/article/pii/S0360835202000360. 

J.D. Hochhalter, W.P. Leser, J.A. Newman, E.H. Glaessgen, V.K. Gupta, V. Yamakov, S.R. Cornell, S.A. 

Willard, G. Heber, “Coupling Damage-Sensing Particles to the Digitial Twin Concept”, (2014). 

https://ntrs.nasa.gov/search.jsp?R=20140006408. 

K. Hribernik, M. von Stietencron, A. Bousdekis, B. Bredehorst, G. Mentzas, K. D. Thoben, “Towards a 

unified predictive maintenance system-a use case in production logistics in aeronautics”, Procedia 

Manufacturing, Vol. 16, pg. 131-138, (2018). 

Innovae, “Solutions based on Virtual and Augmented Reality”, (n.d) http://www.innovae.eu/?lang=en  

ISO 2021, “Consumers and Standards: Partnership for a Better World”, 

https://www.iso.org/sites/ConsumersStandards/1_standards.html (accessed April 2021). 

I.E. Commission, “IEC 60812 - Failure modes and effects analysis (FMEA and FMECA)”, (2018). 

https://standards.globalspec.com/std/13051514/IEC 60812 (accessed June 3, 2020). 

I.O. for Standardization, 13374, “2003 Condition monitoring and diagnostics of machines–Data 

processing, communication and presentation”, (2003). 

I.O. for Standardization, ISO - ISO 17359:2011, “Condition monitoring and diagnostics of machines — 

General guidelines”, (2011). https://www.iso.org/standard/39912.html (accessed July 10, 2020). 

I.O. for Standardization, ISO - ISO 13372:2012, “Condition monitoring and diagnostics of machines — 

Vocabulary”, (2012). https://www.iso.org/standard/52256.html (accessed June 3, 2020). 

https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/
https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/
https://www.sciencedirect.com/science/article/pii/S0360835298000667
https://www.sciencedirect.com/science/article/pii/S0360835202000360
https://ntrs.nasa.gov/search.jsp?R=20140006408.
http://www.innovae.eu/?lang=en
https://www.iso.org/sites/ConsumersStandards/1_standards.html
https://www.iso.org/sites/ConsumersStandards/1_standards.html
https://www.iso.org/standard/39912.html


 

ForeSee Cluster - White Paper 84 | Page 

I.O. for Standardization, ISO - ISO 13379-1:2012, “Condition monitoring and diagnostics of machines — 

Data interpretation and diagnostics techniques — Part 1: General guidelines”, (2012). 

https://www.iso.org/standard/39836.html (accessed July 10, 2020). 

I.O. for Standardization, “ISO - ISO/IEC 19464:2014 - Information technology — Advanced Message 

Queuing Protocol (AMQP) v1.0 specification”, (2014). https://www.iso.org/standard/64955.html 

(accessed June 3, 2020). 

A.K.S. Jardine, P.M. Anderson, D.S. Mann, “Application of the Weibull proportional Hazards model to 

aircraft and marine engine failure data”, Quality and Reliability Engineering International, Vol. 3, No. 

2, pg. 77-82, (1987). 

A.K.S. Jardine, D. Lin, D. Banjevic, “A review on machinery diagnostics and prognostics implementing 

condition-based maintenance”, Mechanical Systems and signal processing, Vol. 20, No. 7, pg. 1483–

1510, (2006). https://doi.org/10.1016/j.ymssp.2005.09.012. 

K. Josifovska, E. Yigitbas, G. Engels, “Reference Framework for Digital Twins within Cyber-Physical 

Systems”, Proc. - 2019 IEEE/ACM 5th Int. Work. Softw. Eng. Smart Cyber-Physical Syst. SEsCPS 2019, 

pg. 25-31, (2019). https://doi.org/10.1109/SEsCPS.2019.00012. 

L. P. Kaelbing, M. L. Littman, A. W. Moore, “Reinforcement Learning: A Survey”, Journal of Artificial 

Intelligence Research, Vol. 4, pg. 237-285, (1996). 

Y. Keraron, “The Standards as Critical Means of Integration of Advanced Maintenance Approaches to 

Production Systems”, Smart Services and Business Impact of Enterprise Interoperability, pg. 297–304, 

(2018). https://doi.org/10.1002/9781119564034.ch37. 

S. Khan, T. Yairi, “A review on the application of Deep Learning in system health management”, 

Mechanical Systems and Signal Processing, Vol. 107, pg. 241-265, (2018). 

D. Kriesel, “Ein kleiner Überblick über Neuronale Netze”, (2017). Retrieved from: 

http://www.dkriesel.com/science/neural_networkshttp://www.dkriesel.com/tech/snipe . 

W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, “Digital Twin in manufacturing: A categorical 

literature review and classification”, IFAC-PapersOnLine., Vol. 51, pg. 1016-1022, (2018). 

https://doi.org/10.1016/j.ifacol.2018.08.474. 

J. Krumeich, D. Werth, P. Loos, “Prescriptive control of business processes”, Business & Information 

Systems Engineering, Vol. 58, No. 4, pg. 261-280, (2016). 

J. Lee, E. Lapira, S. Yang, A. Kao, “Predictive manufacturing system - Trends of next-generation production 

systems”, IFAC Proc., Vol. 46, pg. 150-156, (2013). https://doi.org/10.3182/20130522-3-BR-

4036.00107. 

J. Lee, B. Bagheri, H.A. Kao, “A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing 

systems”, Manuf. Lett., Vol. 3, pg. 18-23, (2015). https://doi.org/10.1016/j.mfglet.2014.12.001. 

Z. Liu, N. Meyendorf, N. Mrad, “The role of data fusion in predictive maintenance using digital twin”, AIP 

Conf. Proc., American Institute of Physics Inc., p. 020023, (2018). https://doi.org/10.1063/1.5031520. 

Y. Lu, C. Liu, K.I.-K. Wang, H. Huang, X. Xu, “Digital Twin-driven smart manufacturing: Connotation, 

reference model, applications and research issues”, Robot. Comput. Integr. Manuf., Vol. 61, (2020). 

101837. https://doi.org/10.1016/J.RCIM.2019.101837. 

https://doi.org/10.1016/j.ymssp.2005.09.012
https://doi.org/10.1002/9781119564034.ch37
http://www.dkriesel.com/science/neural_networkshttp:/www.dkriesel.com/tech/snipe
https://doi.org/10.1016/j.mfglet.2014.12.001


 

ForeSee Cluster - White Paper 85 | Page 

C. Lundgren, J. Bokrantz, A. Skoogh, “Performance indicators for measuring the effects of Smart 

Maintenance”, International Journal of Productivity and Performance Management, (2020). 

https://doi.org/10.1108/IJPPM-03-2019-0129. 

Mathworks (2021), Accessed online at: 

https://uk.mathworks.com/company/newsletters/articles/predictive-maintenance-using-a-digital-

twin.html.  Last accessed: April 2021  

M. Macchi, I. Roda, L. Fumagalli, “On the Advancement of Maintenance Management Towards Smart 

Maintenance in Manufacturing”, IFIP International Conference on Advances in Production 

Management Systems, Springer, pg. 383–390, (2017). 

S. Makris, Cooperating Robots for Flexible Manufacturing, Springer International Publishing, Cham, 

(2021). https://doi.org/10.1007/978-3-030-51591-1. 

Market Watch, “Predictive Maintenance (PdM) Market 2019: Global Industry Size, Share, Business 

Growth, Regional Trends, Key Players Analysis, Segmentation and Opportunity Assessment by 2024”, 

(2019). 

J. McCarthy, M. Zinser, D. Spindelndreier, “The Maintenance Advantage in Manufacturing”, Bost. Consult. 

Gr. Webpage, (2013). Retrieved from: https://www.bcg.com/publications/2013/lean-maintenance-

advantage-manufacturing-achieving-excellence-three-dimensions . 

McKinsey Global Institute, “The Internet of Things : Mapping the Value Beyond the Hype”, McKinsey & 

Company, New York, NY, USA, (2015). 

L. McMullen, "Predictive Maintenance and Service Meets Augmented Reality and Wearable Technology", 

SAP Community, (2019). https://blogs.sap.com/2016/12/19/predictive-maintenance-and-service-

meets-augmented-reality-and-wearable-technology 

MIMOSA, “MIMOSA OSA-EAI 3.2.3a”, (2014). https://www.mimosa.org/specifications/osa-eai-3-2-3a/ 

(accessed June 3, 2020). 

W. Moczulski, “Methods of Acquisition of Diagnostic Knowledge”, Fault Diagnosis, pg. 675–718, Springer 

Berlin Heidelberg, (2004). https://doi.org/10.1007/978-3-642-18615-8_17. 

D. Mourtzis, V. Zogopoulos, E. Vlachou, “Augmented Reality Application to Support Remote Maintenance 

as a Service in the Robotics Industry”, Procedia CIRP, Vol. 63, pg. 46–51, (2017). doi: 

10.1016/j.procir.2017.03.154. 

R. Patrick, M. J. Smith, B. Zhang, C. S. Byington, G. J. Vachtsevanos, R. Del Rosario, “Diagnostic 

enhancements for air vehicle HUMS to increase prognostic system effectiveness”, 2009 IEEE 

Aerospace Conference, pg. 1-12, (2009). 

Y. Peng, M. Dong, M.J. Zuo, “Current status of machine prognostics in condition-based maintenance: a 

review”, The International Journal of Advanced Manufacturing Technology, Vol. 50, No. 1-4, pg. 297-

313, (2010). https://doi.org/10.1007/s00170-009-2482-0. 

H. T. Pham, B. S. Yang, “Estimation and forecasting of machine health condition using ARMA/GARCH 

model”, Mechanical Systems and Signal Processing, Vol. 24, No. 2, pg. 546-558, (2010). 

https://www.sciencedirect.com/science/article/pii/S0888327009002532. 

https://doi.org/10.1108/IJPPM-03-2019-0129
https://uk.mathworks.com/company/newsletters/articles/predictive-maintenance-using-a-digital-twin.html
https://uk.mathworks.com/company/newsletters/articles/predictive-maintenance-using-a-digital-twin.html
https://doi.org/10.1007/978-3-030-51591-1
https://blogs.sap.com/2016/12/19/predictive-maintenance-and-service-meets-augmented-reality-and-wearable-technology
https://blogs.sap.com/2016/12/19/predictive-maintenance-and-service-meets-augmented-reality-and-wearable-technology
https://doi.org/10.1007/978-3-642-18615-8_17
https://doi.org/10.1007/s00170-009-2482-0


 

ForeSee Cluster - White Paper 86 | Page 

Open Automation Software (2021),  Available online at:  

https://openautomationsoftware.com/blog/what-is-an-iot-gateway/. Last accessed: April 2021. 

PricewaterhouseCoopers BWC, “Predictive Maintenance 4.0 - Beyond the Hype: PdM 4.0 Delivers 

Results”, (2018). https://www.pwc.de/de/industrielle-produktion/pwc-predictive-maintenance-4-

0.pdf. 

PwC Proactive Organization, (2016). Available online at:  http://www.chairdigitaleconomy.com.au/wp-

content/uploads/2016/03/RPT_ ProactiveOrganisation_FIN.pdf. Last accessed: 28/04/2018. 

K. Reifsnider, P. Majumdar, “Multiphysics Stimulated Simulation Digital Twin Methods for Fleet 

Management”, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 

p. 1578, (2013). https://doi.org/10.2514/6.2013-1578. 

I. Roda, M. Macchi, L. Fumagalli, “The future of maintenance within industry 4.0: An empirical research in 

manufacturing”, IFIP International Conference on Advances in Production Management Systems , pg. 

39–46, Springer, Cham, (2018). https://doi.org/10.1007/978-3-319-99707-0_6. 

R. Rosen, G. von Wichert, G. Lo, K.D. Bettenhausen, ”About The Importance of Autonomy and Digital Twins 

for the Future of Manufacturing”, IFAC-PapersOnLine, Vol. 48, pg. 567-572, (2015). 

https://doi.org/10.1016/J.IFACOL.2015.06.141. 

P. P. Ruiz, B. K. Foguem, B. Grabot, “Generating Knowledge in Maintenance from Experience Feedback”, 

Knowledge-Based Systems, Vol. 68, pg. 4-20, (2014). https://doi.org/10.1016/j.knosys.2014.02.002ï. 

W. Sammouri, “Data mining of temporal sequences for the prediction of infrequent failure events : 

application on floating train data for predictive maintenance”. Signal and Image processing, Université 

Paris-Est, (2014). ffNNT : 2014PEST1041ff. fftel-01133709f. 

F.-P. Schiefelbein, D. Röltgen, "Augmented Reality für den Mittelstand. Forschungsprojekt Across", 

IT&Production, pg. 40-41, (2018). 

S. Sejdovic, Y. Hegenbarth, G. H. Ristow, R. Schmidt, “Proactive disruption management system: how not 

to be surprised by upcoming situations”, Proceedings of the 10th ACM International Conference on 

Distributed and Event-based Systems, pg. 281-288, (2016). 

S. Sejdovic, N. Kleiner, “Proactive and dynamic event-driven disruption management in the manufacturing 

domain”, 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), IEEE, pg. 1320-

1325, (2016). 

SePiA Pro, (n.d.), Retrieved from: http://projekt-sepiapro.de . 

M. Shaſto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, L. Wang, A, “Modeling , Simulation , 

Information Technology & Processing Roadmap”, Natl. Aeronaut. Sp. Adm., pg. 1-38, (2012). 

B. Sniderman, M. Mahto, M. J. Cotteleer, “Industry 4.0 and manufacturing ecosystems: Exploring the 

world of connected enterprises”, Deloitte Consulting, (2016). 

R. S. Sutton, “Introduction: The Challenge of Reinforcement Learning”, Machine Learning, Vol. 8, pg. 225-

227, (1992). 

E. Tantik, R. Anderl, “Potentials of the Asset Administration Shell of Industrie 4.0 for Service-Oriented 

Business Models”, Procedia CIRP, pg. 363-368, (2017). https://doi.org/10.1016/j.procir.2017.03.009. 

https://openautomationsoftware.com/blog/what-is-an-iot-gateway/
http://www.chairdigitaleconomy.com.au/wp-content/uploads/2016/03/RPT_%20ProactiveOrganisation_FIN.pdf
http://www.chairdigitaleconomy.com.au/wp-content/uploads/2016/03/RPT_%20ProactiveOrganisation_FIN.pdf
https://doi.org/10.1007/978-3-319-99707-0_6
https://doi.org/10.1016/j.knosys.2014.02.002ï
http://projekt-sepiapro.de/
https://doi.org/10.1016/j.procir.2017.03.009


 

ForeSee Cluster - White Paper 87 | Page 

F. Tao, H. Zhang, A. Liu, A.Y.C. Nee, “Digital twin in industry: state-of-the-art”, IEEE Trans. Ind. Informatics, 

Vol. 15, pg. 2405-2415, (2019). https://doi.org/10.1109/TII.2018.2873186. 

D. Tennenhouse, “Proactive computing”, Communications of the ACM, Vol. 43, No. 5, pg. 43-50, (2000). 

Valmet, "Augmented Reality Re-defines Predictive Maintenance", (n.d.), 

https://www.valmet.com/media/articles/all-articles/augmented-reality-re-defines-predictive-

maintenance  

A. Van Horenbeek, L. Pintelon, “A dynamic predictive maintenance policy for complex multi-component 

systems”, Reliability engineering & system safety, Vol. 120, pg. 39–50, (2013). 

https://doi.org/10.1016/j.ress.2013.02.029. 

G.W. Vogl, B.A. Weiss, M. Helu, “A review of diagnostic and prognostic capabilities and best practices for 

manufacturing”, Journal of Intelligent Manufacturing, Vol. 30, No. 1, pg. 79–95, (2019). 

https://doi.org/10.1007/s10845-016-1228-8. 

A. Voisin, E. Levrat, P. Cocheteux, B. Iung, “Generic prognosis model for proactive maintenance decision 

support: Application to pre-industrial e-maintenance test bed”, Journal of Intelligent Manufacturing, 

Vol. 21, No. 2, pg. 177–193, (2010). https://doi.org/10.1007/s10845-008-0196-z.      

Xerfi, “Le marché de la maintenance industrielle à l’horizon 2021”, étude de marché Xerfi, (2019).   

C. Xiongzi, Y. Jinsong, T. Diyin, W. Yingxun, “Remaining useful life prognostic estimation for aircraft 

subsystems or components: A review”, IEEE 2011 10th International Conference on Electronic 

Measurement & Instruments, Vol. 2, pg. 94-98, (2011). 

https://ieeexplore.ieee.org/abstract/document/6037773/?casa_token=8Bs_lNrPpMIAAAAA:aQPs97

zGh7C-9UKxeGyUfnRddgDiRYOuI9oWAFt2tHXiyzgbfXN2RkBtI63MkhUq8mGo_L8. 

P. Zheng, A.S. Sivabalan, “A generic tri-model-based approach for product-level digital twin development 

in a smart manufacturing environment”, Robot. Comput. Integr. Manuf., Vol. 64, 101958, (2020). 

https://doi.org/10.1016/j.rcim.2020.101958. 

X. Zhu, “Semi-Supervised Learning Literature Survey”, Computer Sciences, University of Wisconsin-

Madison, No. 1530, (2005). 

X. Zhu, A. B. Goldberg, “Introduction to Semi – Supervised Learning”, Synthesis Lectures on Artificial 

Intelligence and Machine Learning, Vol. 3, No. 1, pg. 1-130, (2009). 

  

https://doi.org/10.1109/TII.2018.2873186
https://www.valmet.com/media/articles/all-articles/augmented-reality-re-defines-predictive-maintenance
https://www.valmet.com/media/articles/all-articles/augmented-reality-re-defines-predictive-maintenance
https://ieeexplore.ieee.org/abstract/document/6037773/?casa_token=8Bs_lNrPpMIAAAAA:aQPs97zGh7C-9UKxeGyUfnRddgDiRYOuI9oWAFt2tHXiyzgbfXN2RkBtI63MkhUq8mGo_L8
https://ieeexplore.ieee.org/abstract/document/6037773/?casa_token=8Bs_lNrPpMIAAAAA:aQPs97zGh7C-9UKxeGyUfnRddgDiRYOuI9oWAFt2tHXiyzgbfXN2RkBtI63MkhUq8mGo_L8


 

ForeSee Cluster - White Paper 88 | Page 

ANNEX I - Standards application in ForeSee projects 

The following section presents examples of the adoption of standards at some of the use cases from the 

ForeSee projects. The application of standards, protocols and other sets of rules demonstrates the 

importance in each project and to the overall Industry 4.0. 

 

NGSI (Z-BRE4K) 

This example demonstrates the Predictive and preventive analysis of the blade machine in the Philips 

Production line. 

 

Figure 33: Predictive and preventive analysis on Philips Use Case 

The machine production is often interrupted because the Shaving cutter cold forming press stops. The 

press has 6 dies that operate a cutting or a bending process. These processes are monitored by acoustic 

emission sensors. 

Two critical failure modes within dies: Punch breakage and Fatigue. Based on the number of punches per 

second, the acoustic emission and quality data predictive monitoring assesses if the usage cycle is as 

expected and detect wear. 

 

Figure 34: Philips Network 

The four stages of the transmission of data in Philips Network are the following: 

1) MQTT provides all data by topic; 
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2) The interface enables in runtime get all data from MQTT and save all data in each file (including 

Acoustic Emissions – which is a passive method that monitors the transient stress waves 

generated by the rapid release of energy from located sources, such as a fracture within a 

material) 

3) The exchange of information occurs as IDS-Connector get and convert (NGSI Format) all the data 

subject to be monitored to be sent to Orion Context Broker. 

4) After, all data/entities can be consumed by the existent consumers. 

The objective is to assess through alerts if the usage cycle is as expected. The acoustic emissions determine 

whether there is wear or are anomalies through machine learning. 

In this example in the Z-Bre4k project, NGSI format is used for any type of software a large amount of 

information to make available to customers. The use of this standard facilitates customers (as consumers), 

as many of them do not have the technical knowledge or are not prepared to consume the information 

as it is collected. Thus, Z-Bre4k, in the use case of Philips, allows ALWAYS to be made available in the same 

format and can be consumed through any type of software.  

The client-side software must specify which fields the customer demands to access (e.g., temperature), 

as the information is standardized, the system is available in a default format (data structure). After the 

technical configuration/implementation on the client, it will be possible to return data (entities) referring 

to customers’ production the values for each machine operating. The client can access the desirable 

results through a mobile/web application or FIWARE.  

The NGSI protocol offers a set of business benefits to Z-Bre4k: 

• The platform is widely used – Z-Bre4k benefits from being fed by a large number of customers.  

• The Data Analysis process is easier - Z-Bre4k customers and technical providers (Atlantis) will 

request the data in the same format. The format (of acoustic emissions and the state of the 

machine for example), is always the same. 

• The data structure can be easily replicable through different customers - Z-Bre4k does not have 

to make a new structure for each customer.  

• The platform is prepared for bespoke developments - the customer can filter what wants (or not) 

to receive. If necessary, the data structure can also receive new fields and be shared with 

customers in need.  

NGSI was selected upon cost-benefit analysis as many other standards could be suitable candidates. The 

application of this norm enables Z-Bre4k to become more efficient, reducing failures within predictive 

maintenance. Standardisation is – as demonstrated in this example with NGSI on Z-BRE4K project – a key 

factor for Industry 4.0. 

 

EN 15341:2019 and PMML (PROGRAMS) 

The EN15341:2019 standard has been applied in the PROGRAMS MSO (Maintenance Schedule 

Optimization) module that identifies, for each equipment component, the optimal maintenance approach 

– among corrective, preventive, and predictive actions. 
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Figure 35: PROGRAMS MSO 

As cost is one of the main drivers for the Management of organisations, determining the cost will be a key 

parameter. By minimising the cost, it will enable the identification of the optimal strategy for 

maintenance. To develop the cost model, PROGRAMS introduced several KPIs related to maintenance 

tasks, using those as standards to achieve a common view of what is introduced in the formulas – Figure 

35.  The Life Cycle Cost could be precisely determined by considering all relevant cost components, 

allowing to determine how the end users’ costs depend on the maintenance strategies and labour policies.  

The PROGRAMS MSO was able to determine not only which are the components for which is profitable 

to deploy a PdM approach, but also the optimal replacement times for applying “traditional” maintenance 

techniques.  

PMML (Predictive Model Markup Language) enables effective Machine Learning (ML) models exchanging 

between SW modules for data-driven diagnosis and prognosis of machine tools and robots. 

 

Figure 36: Prediction Models in PROGRAMS project 

The key benefits of using PMML are: 

• Enabling a modular approach for PdM boosts interoperability, resource efficiency and 

effectiveness. 

• A “Learner” module parses data to generate the AI/ML-based algorithms (TRAINING), while the 

“Predictor” module uses such algorithms/models (DEPLOYMENT) to assess the status of the 

components.  
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• PdM was effectively deployed on Aurrenak and Calpak to determine the machine/robot status, 

the component responsible for the (eventual) detected anomaly and its RUL (Remaining Useful 

Life). 

 

MIMOSA (SERENA) 

MIMOSA standard provides an information exchange model that allows the description of manufacturing 

floor assets, provides capability on registering assets in the database and manage the information related 

to condition monitoring on maintenance – providing the data modelling for predictive maintenance on 

the SERENA system. 

 

Figure 37: SERENA back-end system 

On the VDL WEW use case in SERENA, the predictive maintenance addresses the condition of rolling mills 

– avoiding becoming corruptive and defective products – on the rolling form machine of this metal parts 

manufacturer floor. MIMOSA has been applied to the back-end system of SERENA – Figure 37 (where the 

information of the assets is stored) presenting the following benefits: 

• SERENA data model was built on top MIMOSA CRIS 3.2.3 ontology. 

• Data stored in JSON format while metadata in MIMOSA CRIS 3.2.3 including the main segment as 

a hierarchy. 

• MIMOSA database generates IDs that the mapped to SERENA IDs accelerating and simplifying the 

whole process of registering equipment and assets from the shop floor. 

• As other technologies/systems can use this standard, it also allows addressing interoperability 

issues. 

 

RAMI 4.0 (PROPHESY) 

In PROPHESY project, a middleware infrastructure has been developed to access and retrieve industrial 

physical asset data for building PdM solutions. End-users required a well-defined mechanism to enable 

external systems to gain access to internal PROPHESY-CPS asset-related data. 
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The solution is an Asset Administration Shell (AAS) that has been developed as a part of the middleware 

infrastructure. It provides a standardized interface, compliant with RAMI 4.0, to facilitate communication 

with external systems. 

 

Figure 38: Asset Administration Shell implementation in PROPHESY project 

The asset Administration Shell has been deployed between an external application and the PROPHESY 

middleware application. The rule of the asset Administration Shell is to stream data to a third-party 

application SHARE – Figure 38. This application uses the PROPHESY application to create augmented 

reality services. The benefits of the implementation of RAMI 4.0 Administration Shell are: 

• Provides standardized digital representation of industrial physical assets (Manifest); 

• Establishes the foundation for interoperability within applications managing industrial systems; 

and 

• Allows end-users to more easily expand and improve current solutions with new third-party 

applications – increase scalability, flexibility, adoption from the industry. 

 

UMATI (PRECOM) 

PRECOM project has three use cases, connecting the system with the equipment of the manufacture and 

its clients. Predictive Maintenance has been analysed on the equipment of the manufactures on the three 

use cases. With the multi-application of machines and sensors, interoperability and selection of standards 

become extremely important for PRECOM. The Umati initiative provides the connectivity for a machine 

tool connection to customer-specific IT infrastructures and ecosystems. 

With Umati, PRECOM uses a layer of a transformation engine, working over OPC-UA protocol. Over this 

layer, a common semantic enables the easier to build an OPC client for data collection.   

PROPHESY CPS

Prophesy 
Cyber 
Entity

Physical 
Entity

Administration Shell

Native 

Communication 
Interface

Asset PROPHESY AAS

Runtime

Administration 
UI

Interaction 
Handler

Third-Party Applications
Modbus

OPC-UA

Proprietary

PROPHESY-DM 

Data 
Representation

Domain-

specific Data 
Representation

Gateway

Data Streaming

Data Sources 
Registry

Runtime

Routing
Data Flow 

Management

Manifest



 

ForeSee Cluster - White Paper 93 | Page 

 

Figure 39: PRECOM data flow for Predictive Maintenance 

 

The main benefits of applying the Umati initiative is: 

• Easy connectivity to a variety of machines and suppliers to other systems in the plant (IT, other 

equipment etc). Open, standardized interfaces based on OPC-UA. 

• Umati is jointly supported by VDW and VDMA and is open to participants from industry, research, 

organisations and networks from all over the world. 

• The customer benefits from standardized communication independent of the machine tool 

manufacturer 

 

AMPQ, MQTT and ISO13374 (UPTIME) 

In the UPTIME project, it was defined a set of components to design a predictive maintenance platform – 

Figure 40. 
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Figure 40: UPTIME Architecture Model 

AMPQ (Advanced Message Queuing Protocol) and MQTT (Message Queuing Telemetry Transport) are 

standards are used to exchange messages between the components of the platform and to facilitate 

exchange with potential external components. 

MQTT is an open OASIS and ISO Standard – ISO/IEC 20922:2016 – is designed for connections with remote 

locations where a "small code footprint" is required or the network bandwidth is limited. It is used in the 

FFT use case where data are remotely exchanged. 

AMQP – ISO/IEC 19464:2014 – is used for the exchange of messages between components: Detect, Decide 

and Predict.  

The benefits of using these standards are:  

• Support to the integration of the components and the interoperability with other components 

using these standards. 

• Enabling the final end-user to integrate the components of the platform in his context and to 

easily update the solution of predictive maintenance with new components or additional 

microservices. 

Additionally, the standard 13374 – condition monitoring and diagnostics of machines — Data processing, 

communication, and presentation – is used for the Functional Architecture of UPTIME and uses the 

associated MIMOSA OSA-CMB standard for implementation OSA-CBM adds data structures and defines 

interface methods for the function blocks defined by the ISO standard. The benefits of adopting this 

standard are: 

• The UPTIME platform is based on an ISO standard with large application scope and implements it 

with an Open System Architecture for Condition-Based Maintenance which fits with the 

modularity and scalability of the platform. 
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• The MIMOSA OSA-CBM technical specification is maintained and available in new formats. The 

end-user will save costs and benefit from a solution where changes and extensions will be 

facilitated. 
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ANNEX II – Tables of standards cited in the radar charts 

 

Standard Short Name Name and title/short description 

Transversal standards 

Requirements 

Engineering 

ISO/IEC/IEEE 29148:2018, Systems and software engineering - Life 

cycle processes - Requirements engineering 

Systems engineering 

process 

ISO/IEC 26702:2007, Systems engineering - Application and 

management of the systems engineering process 

Risk Management ISO 31000:2018, Risk management - Guidelines 
 

RAMI 4.0 (AAS) Reference Architectural Model Industry 4.0 (Asset Administration 

Shell) 

IIC-RA Industrial Internet Consortium – Reference Architecture 

Domain/discipline 

standards 

DOMAIN Standard Description 

QIF ISO 23952:2020, Automation systems and integration - Quality 

information framework (QIF) - An integrated model for 

manufacturing quality information 
 

OPC-UA IEC TR 62541-1:2020 RLV, Redline version, OPC unified architecture - 

Part 1: Overview and concepts 
 

UMATI Universal MAchine Technology Interface is a community of the 

machine building industries and their customers for the promotion 

and adoption of open, standardized interfaces based on OPC UA. 

CoAP CoAP, Constrained Application Protocol, IETF - RFC 7252 

MODBUS MODBUS is a de facto standard for communication protocol used 

over serial lines between electronic devices 

OPC-UA Vision OPC-UA for image processing and industrial automation 

Residual Current 

Sensitive Devices 

IEC 60755:2017, General safety requirements for residual current 

operated protective devices 
 

Technological standards 

https://www.iso.org/standard/72089.html
https://www.iso.org/standard/43693.html
https://www.iso.org/standard/65694.html
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://www.iso.org/standard/77461.html
https://webstore.iec.ch/publication/68039
https://umati.org/
https://tools.ietf.org/html/rfc7252
https://modbus.org/docs/Modbus_over_serial_line_V1.pdf
https://opcconnect.opcfoundation.org/2018/06/opc-ua-machine-vision-and-robotics-specifications-released/
https://webstore.iec.ch/publication/33927
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NGSI NGSI-LD is an ETSI standard to manage the Context Information about 

Context Entities 

HTTP HTTP, Hypertext Transfer Protocol, is a W3C standard 

MQTT ISO/IEC 20922:2016 - Message Queuing Telemetry Transport 

protocol 

AMQP ISO/IEC 19464:2014, Information technology - Advanced Message 
Queuing Protocol (AMQP) v1.0 specification  

XML XML, Extensible Markup Language 

GigE Vision GigE Vision - True Plug and Play Connectivity (global camera interface 

standard) 

JSON JSON, JavaScript Object Notation 

JSON-LD JSON-LD, JavaScript Object Notation for Linked Data 

RDF RDF, Resource Description Framework 

OWL OWL, Web Ontology Language 

PMML 4.3 PMML 4.3: 2016, Predictive Model Markup Language  

Table 2: ForeSee Data-related standards 

The following table presents the list of the most relevant maintenance-related standards for 

ForeSee Cluster, representing the Standardisation state of the art on maintenance-related 

standards in January 2021. 

Standard Short Name Name and title/short description 

Transversal standards 

Maintenance Terminology EN 13306:2017, Maintenance terminology 

Maintenance processes and 
associated indicators 

EN 17007: 2017, Maintenance processes and associated 
indicators 

Asset Management ISO 55000:2014, Asset management — Overview, principles 
and terminology 

Domain/discipline standard 

MIMOSA MIMOSA OSA-CBM, Open system architecture for condition-
based maintenance. The OSA-CBM specification is a standard 
architecture for moving information in a condition-based 
maintenance system. 

FMEA & FMECA IEC 60812:2018, Failure modes and effects analysis (FMEA and 
FMECA)  

https://www.etsi.org/deliver/etsi_gr/CIM/001_099/008/01.01.01_60/gr_CIM008v010101p.pdf
https://www.w3.org/Protocols/History.html
https://www.iso.org/standard/69466.html
https://www.iso.org/standard/64955.html
https://www.w3.org/TR/REC-xml/
https://www.automate.org/a3-content/vision-standards-gige-vision
https://www.json.org/json-en.html
https://www.w3.org/2018/json-ld-wg/
https://www.w3.org/RDF/
https://www.w3.org/TR/owl2-overview/
http://dmg.org/pmml/v4-3/GeneralStructure.html
https://www.en-standard.eu/une-en-13306-2018-maintenance-maintenance-terminology./
https://www.en-standard.eu/bs-en-17007-2017-maintenance-process-and-associated-indicators/
https://www.iso.org/standard/55088.html
https://www.mimosa.org/mimosa-osa-cbm/
https://webstore.iec.ch/preview/info_iec60812%7Bed3.0%7Db.pdf
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Safety of machinery ISO12100:2010, Safety of machinery — General principles for 
design — Risk assessment and risk reduction 
 

Maintenance KPIs EN 15341:2019, Maintenance Key Performance Indicators 

Root Cause Analysis IEC 62740:2015, Root Cause Analysis (RCA). 

Condition Monitoring and 
Diagnostics – Vocabulary 

ISO 13372:2012, Condition monitoring and diagnostics of 
machines — Vocabulary 

Maintenance Tasks 
Scheduling Ontology 

- 

Predictive Maintenance 
Ontology 

- 

Systems and software 
engineering - Life Cycle 
Management 

ISO/IEC/IEEE 24748:2018, Systems and software engineering - 
Life cycle management 
 

Dependability Management IEC 60300:2017, Dependability management 

Weibull analysis EN 61649:2008, Weibull Analysis 

Maintenance Indicators 
(selection and formation) 

VDI 2893:2019, Selection and formation of indicators for 
maintenance  

Condition monitoring and 
diagnostics - Diagnostics 

ISO 13379-2:2015, Condition monitoring and diagnostics of 
machines - Data interpretation and diagnostics techniques - Part 
2: Data-driven applications 

Condition monitoring and 
diagnostics - Prognostics 

ISO 13381:2015, Condition monitoring and diagnostics of 
machines - Prognostics 

Risk-Based Inspection and 
Maintenance 

EN 16991:2018, Risk Based Inspection Framework 

Technological standards 

Machine tool spindles ISO/TR 17243-1:2014, Machine tool spindles - Evaluation of 
machine tool spindle vibrations by measurements on spindle 
housing - Part 1: Spindles with rolling element bearings and 
integral drives operating at speeds between 600 min-1 and 30 
000 min-1 

ECMA-404 ECMA- 404, JSON data interchange syntax 

Mechanical Vibration ISO 10816-3:2009, Mechanical vibration - Evaluation of machine 
vibration by measurements on non-rotating parts - Part 3: 
Industrial machines with nominal power above 15 kW and 
nominal speeds between 120 r/min and 15 000 r/min when 
measured in situ 
ISO/TR 17243-3:2020, Machine tool spindles — Evaluation of 
machine tool spindle vibrations by measurements on spindle 

https://www.iso.org/standard/51528.html
https://www.en-standard.eu/ilnas-en-15341-maintenance-maintenance-key-performance-indicators/
https://webstore.iec.ch/publication/21810
https://www.iso.org/standard/52256.html
https://www.iso.org/standard/72896.html
https://webstore.iec.ch/publication/31206
https://webstore.iec.ch/preview/info_iec61649%7Bed2.0%7Db.pdf
https://www.boutique.afnor.org/standard/vdi-2893/selection-and-formation-of-indicators-for-maintenance/article/934325/eu161190?lang=2
https://www.iso.org/standard/52258.html
https://www.iso.org/standard/51436.html
https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:59454&cs=199E1C99E2EA36713F269297D3607D4F0
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.iso.org/standard/50528.html
https://www.iso.org/standard/74650.html
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housing — Part 3: Gear-driven spindles with rolling bearings 
operating at speeds between 600 r/min and 12 000 r/min 

Condition monitoring and 
diagnostics of machines 

ISO 13374-1:2003, Condition monitoring and diagnostics of 
machines - Data processing, communication and presentation  
 

Table 3: ForeSee Maintenance-related standards 

https://www.iso.org/standard/21832.html

